代数・幾何Ⅱ

科目基礎情報

学校 奈良工業高等専門学校 開講年度 平成30年度 (2018年度)
授業科目 代数・幾何Ⅱ
科目番号 0036 科目区分 一般 / 必修
授業形態 講義 単位の種別と単位数 履修単位: 1
開設学科 機械工学科 対象学年 3
開設期 前期 週時間数 2
教科書/教材 「新版 線形代数」、実教出版、岡本 和夫 監修 〔補助教材・参考書〕 「新版 線形代数演習」、実教出版、岡本 和夫 監修
担当教員 名倉 誠

目的・到達目標

何となく理解するのではなく、自力で問題が解けなければ意味がありません。教科書の「例題」と「練習」および問題集の A 問題が完全に解ける実力をつけることが目標です。各定期試験時での到達目標の内容は次の通りです。

前期中間試験:行列式の図形的意味を理解し、三角形の面積や四面体の体積を計算する。 座標平面上の点の一次変換を行列表示し、様々な2次曲線を標準形で表す。
前期末試験: 行列(すなわち一次変換)の固有値と固有ベクトルを求めて行列を対角化する。 さらに、その応用として行列の冪乗を計算する。

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
評価項目1行列式が平行四辺形の面積や平行六面体の体積を表すことが理解でき、その計算ができる。平行四辺形の面積や平行六面体の体積の計算ができる。平行四辺形の面積や平行六面体の体積の計算ができない。
評価項目2行列式に用いてベクトルの一次独立性の判定ができることを理解できる。行列式を用いてベクトルの一次独立性が判定できる。行列式を用いてベクトルの一次独立性の判定ができない。
評価項目3平面上の点の対称移動や回転移動などが行列で表現できることを理解しその計算ができる。平面上の点の対称移動や回転移動を行列を用いて行える。平面上の点の対称移動や回転移動を行列を用いて行えない
評価項目4平面上の直線や二次曲線の一次変換、その合成変換、逆変換を理解し実際の計算ができる。平面上の直線や二次曲線の一次変換、その合成変換、逆変換の計算ができる。平面上の直線や二次曲線の一次変換、その合成変換、逆変換の計算ができない。
評価項目5行列の固有値、固有ベクトルの意味が理解でき、それを求めることができる。行列の固有値、固有ベクトルを求めることができる。行列の固有値、固有ベクトルをもとめることができない。
評価項目6行列の対角化の意味が理解でき、それを行うことができる。行列の対角化が行える。行列の対角化が行えない。
評価項目7行列のn乗計算、二次形式の標準化の意味が理解でき、それを行うことができる。行列のn乗の計算、二次形式の標準化ができる。行列のn乗の計算、二次形式の標準化ができない。

学科の到達目標項目との関係

準学士課程(本科1〜5年)学習教育目標 (2) 説明 閉じる

教育方法等

概要:
2 年次の「代数・幾何Ⅰ」で学んだベクトルや行列・行列式の知識を基礎として講義は行われます。まず、ベクトルの内積や外積について復習し、行列式の図形的意味について勉強します。次に、座標平面上の点の一次変換(線形変換)を行列表示し合成変換や逆変換と行列の積や逆行列との関係を学びます。さらに、固有値を求めて行列の対角化と呼ばれる行列の標準化を考えます。
授業の進め方と授業内容・方法:
座学による講義が中心です。講義項目ごとに演習問題に取り組み、各自の理解度を確認します。また、定期試験返却時に解説を行い、理解が不十分な点を解消します。
注意点:
関連科目
代数・幾何Ⅰ

学習指針
1 年次と 2 年次で学んだ数学、特に「代数・幾何 I」で学んだ考え方が基礎となります。 また本講義で学ぶ内容は「応用数学 α」、「応用数学 β」をはじめ、各専門科目の基礎となります。

授業計画

授業内容・方法 週ごとの到達目標
前期
1stQ
1週 行列式の図形的意味(1) 平面ベクトルの内積、空間ベクトルの外積を復習し、平行四
辺形の面積と平行六面体の体積を計算することができる。
2週 行列式の図形的意味(2) ベクトルの1次独立・1次従属と、行列式による判定法を学
ぶ。
3週 1次変換(線形変換) 座標平面上の点の対称移動や回転移動を行列表示することが
できる。
4週 合成変換と逆変換 1次変換の合成変換と逆変換について学ぶ。
5週 1次変換の応用(1) 1次変換の線形性を学び、座標平面上の直線を1次変換する
ことができる。
6週 1次変換の応用(2) 座標平面上の2次曲線を1次変換し、その標準形を求めるこ
とができる。
7週 前期中間試験 授業内容を理解し、試験問題に対して正しく解答することが
できる。
8週 試験返却・解答 試験問題を見直し、理解が不十分な点を解消する。
2ndQ
9週 行列の固有値と固有ベクトル(1) 2×2行列の固有値と固有ベクトルを求めることができる。
10週 行列の固有値と固有ベクトル(2) 3×3行列の固有値と固有ベクトルを求めることができる。
11週 正方行列の対角化 2×2行列と3×3行列を対角化することができる。
12週 対称行列の対角化 対 対称行列を直交行列によって対角化することができる。
13週 対角化の応用 行列のn乗を計算することができる。
14週 2次形式の標準化 行列を用いて2次形式を標準化することができる。
15週 前期末試験 授業内容を理解し、試験問題に対して正しく解答することが
できる。
16週 試験返却・解答 試験問題を見直し、理解が不十分な点を解消する。

評価割合

試験小テスト・宿題・課題レポート(合計
総合評価割合7030100
基礎的能力7030100
専門的能力000
分野横断的能力000