工業数学

科目基礎情報

学校 奈良工業高等専門学校 開講年度 平成30年度 (2018年度)
授業科目 工業数学
科目番号 0068 科目区分 専門 / 選択
授業形態 講義 単位の種別と単位数 学修単位: 2
開設学科 機械工学科 対象学年 5
開設期 前期 週時間数 2
教科書/教材 使用せず.
担当教員 小柴 孝

目的・到達目標

1.基礎数学(常微分方程式、ベクトル演算、ベクトル解析)で学習した内容を定着させ、問題を解くことに加えてその解の評価、および特性を説明することができる。
2.応用数学(偏微分方程式、複素関数、フーリエ変換)で学んだ知識を力学系科目における諸問題に適用し,解析解を求めることができる。
3.機械工学(力学系)で使用される各基礎式の展開,ならびに得られる解の特徴を説明することができる。

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
評価項目1基礎数学に関する問題を正確に解くことができ、その解の評価および特性を説明することができる。与えられた問題を正確に解答することができる。正解にいたらなくともその過程を説明することができる。与えられた問題を解くことができない。
評価項目2応用数学の知識を使って、機械工学の諸問題に適用し、解答することができる。与えられた問題を正確に解答することができる。正解にいたらなくともその過程を説明することができる。与えられた問題を解くことができない。
評価項目3機械工学(力学系)で使用される基礎式を計算可能な状態に展開し、解を得るための具体的なアプローチ方法を説明できる。また、その解の特徴を説明できる。基礎式の展開ができ、解法を説明することができる。基礎式の展開ができない。

学科の到達目標項目との関係

準学士課程(本科1〜5年)学習教育目標 (2) 説明 閉じる
JABEE基準 (c) 説明 閉じる
JABEE基準 (d-2a) 説明 閉じる
システム創成工学教育プログラム学習・教育目標 B-1 説明 閉じる
システム創成工学教育プログラム学習・教育目標 D-1 説明 閉じる

教育方法等

概要:
機械工学における数学は、機器の設計や現象解析,さらに数値シミュレーションなど,あらゆるところで活用する必要がある。本講義では、これまで学習した数学力について復習により理解度を深め、機械工学の各分野において解析解の得られる問題を中心に応用能力や展開力を身に付ける。
授業の進め方と授業内容・方法:
各週の授業内容について演習および解説を行う。これまで習得した数学、応用数学の内容に加え、機械工学の専門科目、特に力学系の授業に発展させる能力を身に付ける。
注意点:
単なる答えを導くだけでなく、得られた解の特性など幅広く解を評価できるようすることが重要である。基礎学力の充実のためにも過去に使用した教科書などを参考に復習しておくことが大切である(自己学習)。

授業計画

授業内容・方法 週ごとの到達目標
前期
1stQ
1週 1階の常微分方程式 1階常微分方程式を解くことができる。
2週 2階線形微分方程式 2階線形微分方程式を解くことができる。
3週 連立微分方程式 定係数の線形連立微分方程式を解くことができる。
4週 ベクトルの内積・外積 ベクトルの内積および外積を求めることができる。
5週 ベクトルの微分 曲線・曲面のベクトル表示を理解し,ベクトル場の勾配、発散、回転を求めることができる。
6週 ベクトル場の積分 ベクトル場の積分を行うことができ,ガウスの発散定理を使うことができる。
7週 行列と行列式 行列の基本演算が行える。
8週 逆行列と固有値 逆行列の計算と固有値および固有ベクトルを求めることができる。
2ndQ
9週 複素数と複素関数 複素数の四則演算と初等関数を計算することができる。コーシーリーマンの関係式を用いて関数の正則性を判定できる。
10週 複素積分と写像関数 複素積分を計算することができる。正則関数の等角写像を理解し、応用することができる。
11週 フーリエ級数 関数のフーリエ級数展開を求めることができる。
12週 フーリエ変換とラプラス変換 フーリエ変換および逆変換を計算することができる。ラプラス変換および逆変換を計算することができる。
13週 偏微分方程式(型の分類) 2階線形同次型偏微分方程式の型の分類を理解することができる。
14週 偏微分方程式の変数変換 変数変換、変数分離により2階線形同次型偏微分方程式の一般解を求めることができる。
15週 フーリエ変換による偏微分方程式の解法 2階線形同次型偏微分方程式の一般解をフーリエ変換により求めることができる。
16週 試験返却・解答 試験結果を確認し,解説により理解不十分な箇所を充足することができる。

評価割合

試験演習課題・小テスト合計
総合評価割合7030100
基礎的能力201030
専門的能力502070
分野横断的能力000