鈴鹿	工業高等	事門学校	開講年度 令和06年度 (2	2024年度)	授業科目	 ロボット工学		
科目基礎	堂情報	· ·						
科目番号		0171		科目区分	専門 / 選抜	専門 / 選択必修		
<u></u>		授業		単位の種別と単位		学修単位: 2		
開設学科		機械工学	グ 私	対象学年	5	ン十世· 2		
明設事件		後期	-1 -1	週時間数	2			
刊记文刊			「甘陸ロボット工学」(小川徳二・加			ィースタイプ マイス マップ マイス マップ マイス マップ マイス		
教科書/教	材	工学入門	「基礎ロボットエチ」(7川頭 , 加 引」(中野栄一), 「ロボット制御基礎	滕」二人,参考音 論」(吉川恒夫):	: 1ロボットのカー など	子と前仰」(行本 早),「ロハツ」		
担当教員		白井 達1	<u>t</u>					
到達目標								
動や特性の	の解析に応り	構に関する基 用できる.	基礎理論を理解し,多関節□ボットの運	動学/逆運動学と 	力学の導出に必要 	な専門知識を習得し,ロボットの挙 		
レーブリ	<u> </u>							
			理想的な到達レベルの目安	標準的な到達レ	ベルの目安	未到達レベルの目安		
平価項目1	_		さまざまな産業用ロボットの構造 ,特徴を理解して,実際にどのよ うな作業に適用できるか想像でき る.	さまざまな産業月 , 特徴を理解し ⁻	用ロボットの構造 ている.	さまざまな産業用ロボットの構造 , 特徴を理解していない.		
評価項目2	2		回転関節からなる多関節ロボット の順運動学を理解し、それ以外の 構造のロボットの順運動学の式の 導出ができる.	回転関節からなるの順運動学を理解	る多関節ロボット 解している.	回転関節からなる多関節ロボット の順運動学を理解していない.		
評価項目3	3		回転関節からなる多関節ロボット の逆運動学を理解し、それ以外の 構造のロボットの逆運動学の式の 導出ができる.	回転関節からなの逆運動学を理解	る多関節ロボット 解している.	回転関節からなる多関節ロボット の逆運動学を理解していない.		
評価項目4	1		軌道計画(速度プロファイル含む))を理解し、実際の数値問題を解くことができる.)を理解している	プロファイル含む る.	軌道計画(速度プロファイル含む)を理解していない.		
評価項目5	5		多関節ロボットのカ学とPID制御法を理解すると共に,位置制御と力制御を組み合わせる制御法の必要性を説明できる.		の力学を理解し 題を解くことがで	多関節ロボットの力学を理解して いない.		
評価項目6			さまざまな三次元位置計測の原理 ,特にDLT法の原理を理解して説 明できる	さまざまな三次 種類とおおよその 説明できる	さまざまな三次元位置計測法の種類と用途があることを理解していない			
学科の至	則達目標項	頁目との関	月 係					
教育方法	生等							
概要		ットの選 ボット技 設備の開 ロボット	・要素技術の基本であるモーター, セン 動学について理解する. さらにロボッ 技術(RT)の本質を理解する. この科目は 引発を担当していた教員がその経験を活 を開発する上で必要なロボットの要素	ト工学分野の要素 企業で産業用ロボ かして,産業用ロ 技術,基礎的な運	技術の歴史,現状, ット,シーケンサ ボットの現場での 動学等について講	- 未来像に関する説明を通して, ロ − (PLC) などを用いた自動生産		
授業の進め	か方・方法	・第1派	の内容は,学習・教育目標(A) <視野> <技術者倫理>に対応する. から第15週までの内容はすべて,学習・教育到達目標(B) <専門> に対応する. 講義形式で行う.講義中は集中して聴講する. 計画」における各週の「到達目標」はこの授業で習得する「知識・能力」に相当するものとする.					
全国 全国 全国 全国 全国 全国 全国 全国			標の評価方法と基準>標」1~13の確認を中間試験,期末試験で行う.1~13に関する重みは同じである.合計点の60%の得点の達成を確認できるレベルの試験を課す.得要件> 信要件> で評価方法によって,学業成績で60点以上を取得すること. で説明できなれる基礎知識の範囲> 「メカトロニクス」,「電気工学概論」の学習が基礎となる教科である.さらに,数学の微分積分,三角関数数,行列演算について理解していること.機械運動学における質点の運動,カとモーメントについて理解して.. 32> 証する学習時間と,予習・復習(中間試験,定期試験のための学習も含む)及びレポート作成に必要な標準的間の総計が,90時間に相当する学習内容である. 「ワーポイントを併用するが,しっかりと授業中にノートを取ること.なお,本教科は後に学習する「メカトロ学特論(専攻科)」の基礎となる教科である.					
授業の属	属性・履何	多上の区分	}					
 」アクテ	-ィブラーニ	ニング	□ ICT 利用	□ 遠隔授業対応	<u></u>	☑ 実務経験のある教員による授		
	 I							
		週	授業内容		週ごとの到達目標			
		1週	◆序論 産業界におけるメカトロニクス技			得意なこと,人が得意なことを理解		
			術	2. ロボットの構		成要素, 代表的なロボットの構造を		
		2個	ロボットの構成			以女糸, 10公りのロハフェック博足で		
 後期	3rdQ	2週	□ボットの構成 ◆多関節□ボットの運動学		説明できる.	ボットの運動学を行列演算形式で記		
 後期	3rdQ	2週 3週 4週			説明できる. 3. 水平多関節口 述できる.			

		5週	逆運動学(1)		軌道計画,台形速度制御		6. PTP/CP制御,直線/円弧補間の違いを説明できる. 7. 台形速度制御について説明できる.			
			逆運動				8. 多関節ロボットのヤコビ			
		8週	中間試験				上記1から8			
	<u> </u>	9週			特異姿勢,一般化逆行列		9. 特異姿勢とはなにか,数式を用いて説明できる.			
		10週	◆多関節ロボット 多関節ロボット		ットの力学 トの静力学		10. ロボットの関節トルクと手先力の関係式を導出できる.			
							上記10			
		12週	動力学の復習(ラグランジュの運動方程式) 上記10							
4	lthQ	13週			Ě, 亿	Σ置制御・速度制御・力制御	11. P制御, I動作, D動作について説明できる.			
		14週 ブダ		コンプライアンス制御,ハイブリッド制御,インピー 1 2 . マニピュレータの代表 ダンス制御 明できる.						
			5週 三次元		欠元位置計測手法の解説(DLT法含む) 13.カメラ等を用いた環境 次元位置計測装置の種類と原					
	-	16週								
モデルコス	アカリキ)学習	1		目標		1		
分類		分野		学習内容	}	学習内容の到達目標		到達レベル	授業週	
						カは、大きさ、向き、作用する点に、 、適用できる。		3		
						一点に作用する力の合成と分解を図 [*] 算できる。	で表現でき、合力と分力を計	3		
						一点に作用する力のつりあい条件を説明できる。 力のモーメントの意味を理解し、計算できる。		3		
								3		
専門的能力						偶力の意味を理解し、偶力のモーメントを計算できる。		3		
				力学		着力点が異なる力のつりあい条件を説明できる。		3		
						速度の意味を理解し、等速直線運動における時間と変位の関係を 説明できる。		3		
						加速度の意味を理解し、等加速度運 の関係を説明できる。	動における時間と速度・変位 	3		
	分野別の	事 .,,, , , , , , , , , , , , , , , , ,				運動の第一法則(慣性の法則)を説明	できる。	3		
	分野別の! 門工学	号 機械系	分野			運動の第二法則を説明でき、力、質 方程式で表すことができる。	量および加速度の関係を運動	3		
						周速度、角速度、回転速度の意味を	理解し、計算できる。	3		
						仕事の意味を理解し、計算できる。		3		
						位置エネルギーと運動エネルギーを計算できる。		3		
						すべり摩擦の意味を理解し、摩擦力 る。	と摩擦係数の関係を説明でき	3		
						運動量および運動量保存の法則を説明できる。		3		
						剛体の回転運動を運動方程式で表すことができる。		3		
						計測の定義と種類を説明できる。		2		
				 計測制征	[]	測定誤差の原因と種類、精度と不確かさを説明できる。		3		
						自動制御の定義と種類を説明できる。		2		
						フィードバック制御の概念と構成要素を説明できる。		2		
評価割合					I		T			
					試験		合計			
総合評価割合					100)	100			
					50 50		50			
前期末							50			