香川高等専門学校		開講年度	平成30年度(2018年度)	授業科目	情報工学概論		
科目基礎情報								
科目番号	7011			科目区分	専門/選	建択		
授業形態	講義			単位の種別と単位	数 学修単位	I: 2		
開設学科	電子情報通信工学専攻(2023年度以前入学者)			対象学年	専1			
開設期	前期			週時間数	2	2		
教科書/教材	教科書:仲野 巧著 「VHDLによるマイクロプロセッサ設計入門」 CQ出版株式会社,参考書:兼田 護著 「VHDLによるディジタル電子回路設計」 森北出版株式会社,参考書:木村誠聡著 「ハードウェア記述言語によるディジタル回路設計の基礎」理数工学社							
担当教員	月本 功							
到達目標								

- 1.HDL設計の特徴を知っている。
 2.VHDLの文法と記述について説明できる
 3.組合せ回路の動作を説明できる。
 4.順序回路の動作の説明ができる。
 5.VHDL で論理回路を記述して,論理回路を設計できる。
 6.シミュレーションで動作を確認できる。
 7.簡単な状態遷移回路を設計して動作を確認できる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安		
評価項目1	HDL設計の特徴を説明できる。	HDL設計の特徴を知っている。	HDL設計の特徴を知らない。		
評価項目2	VHDLの文法と記述を十分に説明できる。	VHDLの文法と記述を説明できる。	VHDLの文法と記述を説明できない。		
評価項目3	VHDLで設計した組合せ回路の動作 を説明できる。	組合せ回路の動作を説明できる。	組合せ回路の動作を説明できない。		
評価項目4	VHDLで設計した順序回路の動作を 説明できる。	順序回路の動作を説明できる。	順序回路の動作を説明できない。		
評価項目5	VHDLによる回路設計ができる。	VHDLによる回路記述ができる。	VHDLによる回路記述ができない。		
評価項目6	シミュレーションによる動作検証 ができる。	シミュレーションができる。	シミュレーションができない。		
評価項目7	簡単な状態遷移回路を設計し,シ ミュレーションによる動作検証 ,問題解決ができる。	簡単な状態遷移回路を設計し,シ ミュレーションできる。	簡単な状態遷移回路を設計し,シ ミュレーションできない。		

学科の到達目標項目との関係

教育方法等

概要

- VHDLを用いた論理回路のトップダウン設計手法を習得する。 (1)論理回路設計に必要な VHDL の文法を学習する。 (2)論理回路を VHDL で記述できる。 (3)論理回路を設計しテストベンチを作成してシミュレーションを行い,動作の確認ができる。

教科書および自作資料に基づいて講義をした後,実習を行う。実習では,VHDLで論理回路およびテストベンチを記述した後,ModelSimを用いたシミュレーションにより動作検証を行い,レポートとして提出する。 授業の進め方・方法

学修単位なので予習復習を欠かさないこと。課題レポートは適切な図表に加え,本文中で説明を加えること。オフィスアワーは,火曜日の放課後($16:00\sim17:00$)です。 注意点

授業計画

	週	授業内容	週ごとの到達目標
	1週	HDLによる設計の概要	HDL設計の特徴を知っている。 D2:1
	2週	VHDLの基本記述	VHDLの文法と記述について説明できる。 D2:3
	3週	構造記述と動作記述	VHDLの文法と記述について説明できる。 D2:3
	4週	VHDLシミュレーション	テストベンチを記述し、シミュレーションができる。
1st	tQ 5週	VHDLによる組合せ回路設計	Nビット比較器を理解する。 D2:3
	6週	VHDLによる組合せ回路設計	Nビット比較器を設計し,シミュレーションによる動作検証ができる。 E2:3, E4:2
前期	7週	VHDLによる組合せ回路設計	デコーダ回路, パリティ回路を理解する。 D2:3
	8週	VHDLによる組合せ回路設計	デコーダ回路, パリティ回路を設計し, シミュレーションによる動作検証ができる。 E2:3, E4:2
	9週	VHDLによる状態遷移回路設計	ステートマシンを用いた簡単な自動販売機の設計方法 を理解する。 D2:3
	10週	! VHDLによる状態遷移回路設計	ステートマシンを用いた簡単な自動販売機の設計し , シミュレーションによる動作検証ができる。 E2:3, E4:2
2nd	dQ 11退	! VHDLによる状態遷移回路設計	ROMを用いた簡単な自動販売機の設計方法を理解する。 D2:3
	12退	! VHDLによる状態遷移回路設計	ROMを用いた簡単な自動販売機の設計し,シミュレーションによる動作検証ができる。 E2:3, E4:2

	13週	VHD	Lによる状態	遷移回路設計	ステートマシンを用いた応用回路(シリアル送信回路)記述方法を理解する。 D2:3					
	14週	VHD	HDLによる状態遷移回路設計 HDLによる状態遷移回路設計 前期期末試験			ステートマシンを用いたシリアル送信回路を設計できる。 E2:3, E4:2				
	15週	VHD				設計したシリアル送信回路をシミュレーションし,動 作検証ができる。 E2:3, E4:2				
	16週	前期								
モデルコアカ	コリキュラムの	の学習	内容と到達	達 目標						
分類 分野			学習内容	学習内容の到達目			到達レベル	授業週		
評価割合										
		定	定期試験		レポート		合計			
総合評価割合		40	40		60		100			
基礎的能力		0	0		0 0		0			
専門的能力		40	40		60 100		100	.00		
分野横断的能力		0	0		0 0		0			