鶴	岡工業高等	等専門学校	党 開講年度	開講年度 平成28年度 (2016年度)			美科目 j	工学実験・実習 I (化学・生 物)			
科目基			I	<u> </u>				(2)			
<u>- </u>		0243		科目区分		Ī	 専門 / 必修	3			
<u></u>		実験・	 実習			単位の種別と単位数 履修単位:					
開設学科			 学科(機械コース)				2				
開設期		通年			週時間数	2					
教科書/教							-				
担当教員		上條 利	l夫,阿部 達雄								
到達目	標										
2 中和	滴定法を理	解し、酸あ	いずれかについて, ケ るいは塩基の濃度計算 酸化剤あるいは還元剤	うできる.							
ルーブ	リック										
			理想的な到達レ	理想的な到達レベルの目安 標準的な到			安	未到達レベルの目安			
評価項目	1		陽イオンおよび , 分離のための	陽イオンおよび陰イオンについて , 分離のための定性分析ができる。		陰イオン 雛のため	のいずれ の定性分	陽イオンおよび陰イオンについて 分離のための定性分析ができない 。			
评価項目	2		中和滴定法を理り基の濃度計算で	基の濃度計算できる。塩基の湯			あるいは	中和滴定法を理解できず,酸および塩基の濃度計算ができない。			
評価項目	13		酸化還元滴定法および還元剤の流	を理解し, 酸化剤 農度計算できる	酸化還元滴定法あるいは還元剤の	を理解しの濃度計	,酸化剤 算できる	酸化還元滴定法を理解し,酸化剤 および還元剤の濃度計算できない 。			
学科の	到達目標	項目との	 関係								
教育方:	法等										
概要		1田紀 レ	たに宝験の其木場作る	・修但させる その	タ 分析化学の塔	世内 突が	宇阪の宇宙	って代表的な元素の性質・特徴等の 食で確認できるようにするために E確に実験できる能力を身につけさ			
受業の進	め方・方法	I .									
注意点		レポー	ト60%,実験ノート	、・清掃10%, 実	験技術30%をも	って総合	的に評価し	して50点以上を合格とする。			
事前・	事後学習	、オフィ	スアワー								
授業計	画										
)到達目標				
		1週	実験の基本的注意事項(説明)				分析実験で必要な数値の扱いができる。実験レポート				
					の形式や書き方が理解できる。						
		2週	定性分析(説明)			イオンの定性分析の概要を理解できる。 陽イオン1族の各個反応実験を行い,元素の性質					
前期		3週	陽イオン1族の各個	固反応と系統分析		解でき,一部の元素の系統分析を行い分離操作確認 できる。					
	1stQ	4週	陽イオン3・4族の	D各個反応	陽イオン3・4族の各個反応実験を行い、元素の性質が理解できる。						
		5週	陽イオン5族の各個	イオン5族の各個反応				陽イオン5族の各個反応実験を行い,元素の性質が理解できる。			
		6週	陽イオン3族の系統	ポイオン3族の系統分析			陽イオン3族の系統分析を行い分離操作確認ができる。				
		7週	陰イオンの定性分析	ミイオンの定性分析			代表的な陰イオン5種の系統分析を行い, その性質が 理解できる。				
		8週	重量分析(説明)	重量分析(説明)			重量分析について理解している。				
		9週		塩化物イオンの定量			塩化物イオンの定量ができる。				
		10週	天秤の使い方とルツ 硫酸銅中の結晶水	F秤の使い方とルツボの恒量 誘酵銅中の結晶水			天秤の使い方を習得し,ルツボの恒量を求めることができる。硫酸銅中の結晶水ができる。				
		11週	硫酸銅中の銅の定量	流酸銅中の銅の定量 1			硫酸銅中の銅の定量ができる。				
	2ndQ	12週	硫酸銅中の銅の定量	流酸銅中の銅の定量 2			硫酸銅中の銅の定量ができる。				
		13週	硫酸銅中の硫酸の気	硫酸銅中の硫酸の定量 1			硫酸銅中の硫酸の定量ができる。				
		14週	硫酸銅中の硫酸の気				硫酸銅中の硫酸の定量ができる。				
		15週	測定とその誤差			各種測定における誤差について理解している。					
		16週									
後期		1週	容量分析(説明)	容量分析(説明)			容量分析について理解している。				
		2週	中和滴定法 標準流	中和滴定法 標準溶液の調製と標定			中和滴定法により標準溶液の調製と標定ができる。				
		3週		和滴定法 工業用硫酸の純度測定			中和滴定法により工業用硫酸の純度測定ができる。				
		4週	キレート滴定法 様の測定	·レート滴定法 標準溶液の調製・標定・Zn未知試料 測定			キレート滴定法によりZn未知試料の測定ができる。				
	3rdQ	5週		トレート滴定法 水の硬度測定			 キレート滴定法により水の硬度測定ができる。				
		6週	沈殿滴定法 標準溶液の調製と標定			沈殿滴定法により標準溶液の調製と標定ができる。					
	1	7)E	カの冷やは 海シロ	<u> </u>	沈殿満足法により保集冷機の調義と保足がじざる。						

沈殿滴定法により海水中のCIイオンの定量ができる。

酸化還元滴定法により酸化剤あるいは還元剤の濃度を求めることができる。

酸化還元滴定法により酸化剤あるいは還元剤の濃度を求めることができる。

7週

8週

9週

4thQ

沈殿滴定法 海水中のCI イオンの定量

酸化還元滴定法 I

酸化還元滴定法II

		10)		空星 4	〉 た (キャか)			容量分析について現	 里解し、濃		量の計算が	
					・ 単力 (() () () () () () () () ()			できる。				
		11) 12) 13) 14)		機器使用分析(説		明)		機器分析について説明できる。 pH計を用いた中和滴定の実験を行い,機器分析の			2015の細胞	
				中和滴定法(pH i		tによる) 		PRIT を用いて中和両足の実験を11い、機器が何の を理解できる。			活力が10分成時	
				電位差滴定(ORP		計による) ORP計を用いた電位差滴定法 の概略を理解できる。			の実験を行い	ヽ, 機器分析		
				溶存的	酸素濃度測定		溶存酸素濃度測定を行うことができる。					
		15	周	吸光)	光度分析	吸光光度分析を行うことがで			:きる。 			
16週												
モデルコ	アカリ	<u>キユ</u>		学習	内容と到達	目標				_		
分類			分野		学習内容	学習内容の到達目標				到達レベル	授業週	
						実験の基礎知識(安全防具の使用法、薬品、火気の取り扱い、整理整頓)を持っている。				3		
						事故への対処の方法(薬品の付着、引火、火傷、切り傷)を理解し、対応ができる。				2		
					I	測定と測定値の取り	3					
基礎的能力	自然科	学	化学実験	験	化学実験	有効数字の概念・測定器具の精度が説明できる。				2		
						レポート作成の手順を理解し、レポートを作成できる。				2		
						ガラス器具の取り扱いができる。 基本的な実験器具に関して、目的に応じて選択し正しく使うこと				3		
						基本的な実験器具は ができる。	3					
						試薬の調製ができる	3					
	分野別の専 門工学					キルヒホッフの法則	4					
			電気・電子	雷子	子電気回路	合成抵抗や分圧・5 る。	4					
			系分野			重ねの理を説明し、	4					
						ブリッジ回路を計算	4					
 専門的能力						電力量と電力を説明	4					
					〗 〗 〗 〗 〕 分析化学実 髭 験	中和滴定法を理解し、酸あるいは塩基の濃度計算ができる。				4		
	分野別の工		化学・生物 系分野【実 験・実習能	生物		酸化還元滴定法を理解し、酸化剤あるいは還元剤の濃度計算がで きる。				4		
	字実験 習能力	学実験・実習能力		習能		キレート滴定を理解し、錯体の濃度の計算ができる。				4		
			カ】			陽イオンおよび陰イオンのいずれかについて、分離のための定性 分析ができる。				4		
評価割合												
		試験		発	表	相互評価	態度	ポートフォリオ	その他	合計		
総合評価割合C		0		0		0	0	0	100	100)	
基礎的能力	0			0		0	0	0	50	50		
専門的能力	専門的能力 0					0	0	0	50	50		
分野横断的	能力 0	力 0		0		0	0 0 0		0	0		