					2023年度)	授業	 (科目	流体工学		
科目基礎			1 1/13/213 1 /2	,nee /x (/						
科目番号		0017			科目区分	ī		//冬		
授業形態 授業					単位の種別と単位		子1.1/2 夏修単位			
開設学科		機械工学科			対象学年 5			1		
開設期			後期			2				
<u> </u>	<i>5</i> 1 ★ ★		伎期 教科書:松尾一泰「流体の力学」(理工学社)			4	=			
担当教員		村上信太		/子」(垤丄于℡)						
型		利工 16人	(ED							
2 実 検 流 渦 に る	微分の意味 体積に質量 粒子に運動 概念を説明 関連する諸 ポテンシャ	を理解し,活 保存の法則を 方程式を適用 できる。 定理を理解・	適用して連続の式を してオイラーの運動	と導くことができる か方程式を導くこと	。 ができる。	ことができ	る。			
ルーフ	リック		T田は日かたようない去し		無法がおれています	~~		ナがきしがよる日ウ		
			理想的な到達レベルの目安		標準的な到達レベルの目安			未到達レベルの目安		
評価項目1			ラグランジュの方法とオイラーの 方法の違いを十分に理解し, それ ぞれの特徴を説明することができ る。		ラグランジュの方法とオイラーの 方法の違いを理解し、それぞれの 特徴を説明することができる。			ラグランジュの方法とオイラーの 方法の違いが理解できず,それぞれの特徴を説明することができない。		
評価項目2					実質微分の意味きる。	実質微分の意味を理解し,活用で きる。		実質微分の意味を理解できず,活 用できない。		
評価項目3				食査体積に質量保 して連続の式を導	検査体積に質量をして連続の式を	査体積に質量保存の法則を適用 て連続の式を導くことができる		検査体積に質量保存の法則を適用 して連続の式を導くことができない。		
評価項目4			様々な座標系で 程式を適用して 程式を導くこと	流体粒子に運動方 オイラーの運動方 ができる。	流体粒子に運動方程式を適用して オイラーの運動方程式を導くこと ができる。		画用して 尊くこと	流体粒子に運動方程式を適用して オイラーの運動方程式を導くこと ができない。		
評価項目5			渦の概念を詳細し	こ説明できる。	渦の概念を説明できる。			渦の概念を説明できない。		
評価項目6			渦に関連する諸第 ・活用できる。	定理を十分に理解	渦に関連する諸? できる。	る諸定理を理解・活用		渦に関連する諸定理を理解・活用 できない。		
評価項目7			速度ポテンシャル 全流体の流動の できる。	速度ポテンシャル・流れ関数と完 全流体の流動の関係を詳細に説明 できる。 。 。 。 。						
学科の	到達目標」	項目との関	係							
学習・教	育到達度目	 標 (B)								
教育方法	 法等									
概要		非圧縮性対することが	流れの理論的な取り , 速度ポテンシャル	扱い方について解 ・・流れ関数の活用	説する。完全流体 方法を習得するこ	の基礎方	程式の導 とする。	事出を理解すること, 渦の概念を理解		
 授業の進め方・方法 【学習方: 講義内容		の授業を行う。演習は授業中およびレポートとして随時取り入れる。 								
注意点		中間・期 する。 【備考】 定期試験 【教員室 内線電話	【成績の評価方法・評価基準】 中間・期末の2回の定期試験を行う。時間は50分とする。試験の平均点(70%),レポート(30%)で総合成績を評価する。到達目標に掲げる各項目の到達度を評価基準とする。 【備考】 定期試験および毎回の授業には電卓を持参すること。 【教員の連絡先】 研究室 A棟3階(A-310) 均線電話 8933 e-mail: s.murakamiアットマークmaizuru-ct.ac.jp(「アットマーク」は@に変える)							
	屋性。廖/	 修上の区分								
	<u>雨 エ・/ を </u> ティブラー:		□ ICT 利用					────────────────────────────────────		
<u> </u>	<u>, 1 ノ ノー-</u>				□ 逐附汉未刈川	r,		大物性獣ツめる氷貝による技味		
授業計	画	週	运			油ブレの	'페루ㅁ+	番		
後期			授業内容 ミラバスの説明 完全液体の1次元流れ		 h	週ごとの	/到廷日作	示		
			シラバスの説明,完全流体の1次元流れ			1				
			ラグランジュの方法とオイラーの方法 実質為会		<u> </u>	1				
			実質微分			2				
	3rdQ		1次元流れに対する		· ·					
			1次元流れに対する			· ·				
			2次元流れに対する		·					
			2次元流れに対する	連続の式・オイラ	ーの連動方程式	運動方程式 3,4				
		8週	中間試験		1					

		9週	流体の回転運動と			5			
		10週	渦度			5			
		11週	循環とストークス	の定理		5, 6			
		12週	ケルビンの循環定	'理		5, 6			
	4thQ	13週	速度ポテンシャル	,		7			
		14週	流れ関数			7			
		15週	2次元定常渦なし	流れ		7			
		16週	(15週目の後に期) 期末試験返却・到	 記験を実施 達度確認					
モデルコ	 アカリキ	ニュラムの	学習内容と到過						
分類 分野			学習内容 学習内容の到達目標					到達レベル	授業週
評価割合	ì								
			試験		ポートフォリオ		合計		
総合評価割合			70		30		100		
基礎的能力			0		0		0		
専門的能力			70		30		100		
分野横断的能力			0		0		0		