		等専門学校	₹ │ 開講年度 │平月	成31年度 (20)19年度)	授	業科目 応用工	学実験 [
科目基		1		1.	TUDE ()					
科目番号		0107			科目区分	11///	専門 / 必修			
授業形態		実験			単位の種別と	単位数	履修単位: 2			
開設学科		機械工	学科		対象学年		4			
開設期		後期			週時間数					
教科書/教										
担当教員	<u>l</u>	南野 郁	法,藤田 活秀,後藤 実,一田] 啓介,德永 敦士	,山﨑 由勝,森	﨑 哲也,	禁﨑 哲也,篠田 豊			
到達目	標									
(2)試験 (3)データ (4)結果 (5)適切が	幾の操作方法 タ測定、解析 を報告書にき な実験レポー された課題に	まを習熟でき 近などの技法 まとめること - トを提出期	を習得できる	できる						
<u>ルーフ</u>	<u>999</u>	理	想的な到達レベルの目安	標準的な到達し	標準的な到達レベルの目安 最低別(可)		到達レベルの目安	未到達レベルの目安		
		=			- TER 6 T	- /				
評価項目1			単独で操作できるほど試 機の操作に習熟できてい 。	テーマの目的を 験機の操作に習る。	熟できてい		目的をある程度理 けを借りれば試験 できる。	テーマの目的を理解せず、 助けを借りても試験機を操 作できない。		
評価項目2			ータ測定および解析など 技法を多く習得し、結果 正確に報告書にまとめる	データ測定およ の技法を習得し 告書にまとめる	,、結果を報	法を習得 結果を報	定または解析の技し、助けを借りて 告書にまとめるこ	データ測定および解析の技法を習得できず、助けを借りても結果を報告書にまと		
		-	とができる。	る。		とができ	ే సం	めることができない。 		
りで 評価項目3 実			えられた課題に熱心に取組み、目的と結論が明確、 、深い考察のある適切な験レポートを提出期限まに提出することができる	り組み、目的と適切な実験レオ	レポートを提出 、適切を		た課題に取り組み 実験レポートを提 とができる。	与えられた課題に取り組めず、適切な実験レポートを 提出することができない。		
		· .								
学科の	到達目標.	項目との	関係							
教育方法	法等									
概要 一	め方・方法	法に習 下記の を獲得 なる。 (1) ラ	熟し、データの測定、整理 テーマより半年間、実験・	製、解析方法、計算実習に取り組むも自ら立案できま報告書に纏めるすることができる	算方法などの 。指導教員と るようになる ことができる る。報告書のE	様々な技 相談しな 。得られ 。 目的で評価	法を習得する。 がら、実験・実習を た実験・実習結果を	(は、実験・実習を行うこと 後、機器、道具などの操作方 と遂行するために必要な知識 解析し、報告できるように		
注意点		(3)ラ (4)編 (5)道 れは減。 (6)与	ニータ測定、解析などの技芸 ま果を報告書にまとめるこ 動切な実験レポートを提出 点となる 10%	法を習得できる。 とができる。報行 期限までに提出	。報告書の実際 告書の考察で記 することがでる	検結果で記 評価 30% きる。実際	, 険レポート全体のバ	ランスを評価する。 提出の過 ニケーションスキルや積極性		
授業計	 iあi	1/1//9///	<u> </u>							
文表	四		極業市 交			\H →\ 1				
		週	授業内容				の到達目標	/ +> トーズトキキートーカワ ロ ~メー+.ムヒーー ドワ		
		1週	南野郁夫			= 1 7 1111	1. 太陽光発電実験システムおよび構成部品の特性計測			
		2週	藤田 活秀				1. MATLABによる振動試験のデータ解析			
		3週	後藤 実			1. 顕術	1. 顕微鏡による摩擦面解析 2. 表面の形態観察・組成分析・構造解析			
後期		4週	篠田 豊				1. 超硬合金の高強度・高靭性化設計			
	3rdQ	5週	徳永 敦士				1. 燃料電池の性能評価			
		6週	一田 啓介		1. フ		1. プログラミング言語による物体の制御			
		7週	山崎 由勝				フログラミング言語による物体の制御 熱機械分析法によるガラス転移測定			
		8週	森崎哲也			1. アイデア創出、アイデアを具現化したもの創りの 計・製作と性能評価				
		9週					* *			
		10週								
		11週								
		12週								
	4thQ	13週								
		14週								
		15週								
		16週	+							
 "	<u>ー</u> コマナ!!									
	コアカリ:		の学習内容と到達目標							
群		分野	学習内容 学習	内容の到達目標				到達レベル 授業週		

						物理、化学、情報、工学における基礎的な原理や現象を明らかに するための実験手法、実験手順について説明できる。						
						実験装置や測定器の操作、及び実験器具・試薬・材料の正しい取 扱を身に付け、安全に実験できる。						
						実験データの分析、誤差解析、有効桁数の評価、整理の仕方、考察の論理性に配慮して実践できる。						
		丁学宝除:		考 夕	工学実験技術(各種測定 が(各種測定 方法、デーリク処理、考 察方法)	実験テーマの目的に沿って実験・測定結果の妥当性など実験データについて論理的な考察ができる。						
基礎的能力	工学基礎		ポープスポスリ 術(各種測 方法、デ			タについて論理的な考察ができる。 実験ノートや実験レポートの記載方法に沿ってレポート作成を実践できる。						
			夕処理、 察方法)			実験データを適切なグラフや図、表など用いて表現できる。						
			示刀広)			実験の考察などに必要な文献、参考資料などを収集できる。						
						実験・実習を安全性や禁止事項など配慮して実践できる。						
						個人・複数名での実験・実習であっても役割を意識して主体的に 取り組むことができる。						
						共同実験における基本的ルールを把握し、実践できる。						
						レポートを期限内に提出できるように計画を立て、それを実践できる。						
評価割合			•								•	
	試	験		発	 表	相互評価	態度	レポート	その他	É	 計	
総合評価割合	à 0			0		0	0	90	10	1	00	
知識の基本的 理解	0			0		0	0	40	0	4	0	
思考・推論・造への適用力				0		0	0	40	0	4	0	
汎用的技能	0	0		0		0	0	0	0	0		
態度・志向性 (人間力)	0	0		0		0	0	10 10		2	0	
総合的な学習 験と創造的思 力	3体 0	0		0		0	0	0	0			