科目基礎		等專門学校	₹ 開講年度 令和06年度	(2024年度)	授業科目	材料力学Ⅰ		
1102		ען ננונינ	7/1 2011-51	(20211/1)		125 J T		
科目番号		0034		科目区分	専門 / 必修			
授業形態		講義		単位の種別と単				
開設学科	ļ	創造工	学科(情報コース)	対象学年	3			
開設期		通年		週時間数	2			
教科書/教			ional Engineer Library 材料力学,	編著 久池井成,	, 実教出版 (2015)			
担当教員		三村 泰	成					
到達目 1. 応力 2. 引張 3. はりの	とひずみ, こ ・圧縮およて	フックの法則 がねじりを受 って生じる曲	」,弾性と塑性の区別,材料の強度と ける棒の変形と応力を,静定問題と Bげモーメントとせん断応力,曲げ応	許容応力が理解でき 不静定問題の両方に カ, たわみ曲線が求	る. ついて求められる. められる.			
ルーブ	リック							
			理想的な到達レベルの目安	標準的な到達レ	ベルの目安	未到達レベルの目安		
評価項目	11		自由物体図を描き、力の釣合いを作り、反力、反モーメントを 算できる.	計 自由物体図を描 を作れる.	き,力の釣合い式	自由物体図,力の釣合い式を理解していない.		
評価項目	12		「引張応力」, 「ねじり応力」: 計算できる.	を 「引張応力」, 理解できる.	「ねじり応力」を	「引張応力」, 「ねじり応力」を 理解でない.		
評価項目	13		「はりの問題」で断面のせん断; ,曲げモーメントを求めて ,SFD,BMDを描ける.	, 曲げモーメン	で断面のせん断力トを理解できる.	「はりの問題」でせん断力, 曲げ モーメントが理解できない.		
評価項目	14		「はりの問題」で断面2次モー>ト,断面係数を求めて,曲げ応定を計算できる.	カート, 断面係数, きる.	で断面2次モーメン 曲げ応力を理解で	「はりの問題」で断面2次モーメント,断面係数,曲げ応力を理解できない。		
評価項目	15		はりの「たわみ」, 「たわみ角」 を計算できる.	はりの「たわみ の微分方程式を	」, 「たわみ角」 作れる.	はりの「たわみ」, 「たわみ角」 を理解できない.		
	到達目標耳							
. ,		と情報技術を	を身につける。					
教育方法	法等							
概要		機械や 圧縮, t する.	構造物を設計するためには,材料の強さん断,曲げの問題を扱うことにより	渡に関する基本的な)明確にし,材料力学	は考え方を学ぶ必要だ その基本概念である	がある.すなわち,単純な引張り・ 「応力」,「ひずみ」について学習		
授業の進	め方・方法	教科書の	と自作教材で講義を行う.基本的には	授業の前半に説明,	後半に演習という肝	どで進める.		
注意点		前期中間	間・後期中間試験(45%), 前期末 以上を合格とする.	・学年末試験(45%)),受講姿勢,課題	(10%)を総合的に評価する		
車前。	事後学習、	_	·					
答も実施	: 「微分 : 自由課 アワー: する.	積分の復習 題(提出義	, 「自由物体図, 力とモーメントの 際なし) , 提出課題を提示する.)釣合い」, 常に関係	系するので事前に復わる。	ロレーレンはノーノギー・		
	属性・履修			受け付けて,順次,	区答する. 必要があ	図してから臨んでください. れば,時間調整して対面での質疑応		
□ アク:	属性・履作 ティブラーニ	修上の区分		受け付けて,順次,資		留してから臨んでくたさい。 れば、時間調整して対面での質疑応 □ 実務経験のある教員による授業		
	ティブラーニ	修上の区分)			1		
	ティブラーニ	修上の区分)			□ 実務経験のある教員による授業		
	ティブラーニ	<u>修上の区分</u> ニング	〕 ☑ ICT 利用		応 週ごとの到達目標 ガイダンス	□ 実務経験のある教員による授業		
	ティブラーニ	<u>修上の区分</u> ニング 週	→ ☑ ICT 利用 ☑ IK 利用 ☑ 授業内容		応 週ごとの到達目標 ガイダンス 力学の基礎を理解 なる. 力の釣合い式を書	□ 実務経験のある教員による授業 できる. 自由物体図を描けるように ける.		
	ティブラーニ	修上の区分 ニング 週 1週	→ ☑ ICT 利用 ☑ ICT 利用 授業内容 ガイダンス		応 週ごとの到達目標 ガイダンス 力学の基礎を理解 なる. 力の釣合い式を書 簡単な反力を求め 外力と内力を理解	□ 実務経験のある教員による授業 できる. 自由物体図を描けるように ける. ることができる. でき, 求めることができる.		
	ティブラーニ	修上の区分ニング週1週2週3週4週	計 ☑ ICT 利用 授業内容 ガイダンス カ学の基礎 (1) カ学の基礎 (2) 応力とひずみ (1)		応 週ごとの到達目標 ガイダンス 力学の基礎を理解 なる. 力の釣合い式を書 簡単な反力を求め 外力と内力を理解 応力とひずみ, フ できる.	□ 実務経験のある教員による授業できる. 自由物体図を描けるようにける. ることができる. でき, 求めることができる. ックの法則と弾性係数について理解		
	ティブラー:	多上の区分 ニング 週 1週 2週 3週	② ICT 利用 授業内容 ガイダンス カ学の基礎 (1) カ学の基礎 (2)		応 週ごとの到達目標 ガイダンス カ学の基礎を理解 なる. カの釣合い式を書簡単な反力を理解 応力と内力を理解 応力とひずみ, フできる.	□ 実務経験のある教員による授業できる。自由物体図を描けるようにける。 ることができる。でき、求めることができる。 ックの法則と弾性係数について理解		
	ティブラー:	修上の区分ニング週1週2週3週4週	計 ☑ ICT 利用 授業内容 ガイダンス カ学の基礎 (1) カ学の基礎 (2) 応力とひずみ (1)		応 週ごとの到達目標 ガイダンス 力学の基礎を理解 なる. から合い式を理解 かかり からない がった かった かった かった かった かった かった かった かった かった か	□ 実務経験のある教員による授業できる。自由物体図を描けるようにける。 ることができる。でき、求めることができる。 ックの法則と弾性係数について理解 ついて理解できる。 断面が変化をもつ棒の引張りと圧縮る。		
授業計	ティブラー:	修上の区分ニング週1週2週3週4週5週	分 図 ICT 利用 授業内容 ガイダンス カ学の基礎 (1) カ学の基礎 (2) 応力とひずみ (1) 応力とひすみ (2)		応 週ごとの到達目標 ガイダンス カ学の基礎を理解 なるの から い式を理解 かかり から から かった を理解 かった から かった かった できる. 応力 ひずみ 曲線 に 一様 な 断 面 解 で できる. して および 遠心に る.	□ 実務経験のある教員による授業できる。自由物体図を描けるようにける。 ることができる。でき、求めることができる。 ックの法則と弾性係数について理解 ついて理解できる。 断面が変化をもつ棒の引張りと圧縮る。		
授業計	ティブラー:	修上の区分ニング週1週2週3週4週5週6週	計 図 ICT 利用 授業内容 ガイダンス カ学の基礎 (1) カ学の基礎 (2) 応力とひずみ (1) 応力とひすみ (2) 引張りと圧縮 (1)		応 週ごとの到達目標 ガイダンス カ学の基礎を理解 なるの から い式を理解 かかり から から かった を理解 かった から かった かった できる. 応力 ひずみ 曲線 に 一様 な 断 面 解 で できる. して および 遠心に る.	□ 実務経験のある教員による授業できる。自由物体図を描けるようにける。 ることができる。でき、求めることができる。 ックの法則と弾性係数について理解ついて理解できる。 断面が変化をもつ棒の引張りと圧縮る。 よる応力とひずみについて理解でき		
授業計	ティブラー:	多上の区分ニング週1週2週3週4週5週6週7週	分 図 ICT 利用 授業内容 ガイダンス カ学の基礎 (1) カ学の基礎 (2) 応力とひずみ (1) 応力とひすみ (2) 引張りと圧縮 (1) 引張りと圧縮 (2)		応 週ごとの到達目標 ガイダンス カ学の基礎を理解 なるの かかり ない できる できる かん かいずみ かってきる できる できない できる できない できる できない できる できない できない できない できない できない できない できない できない	□ 実務経験のある教員による授業できる。自由物体図を描けるようにける。 ることができる。でき、求めることができる。 ックの法則と弾性係数について理解できる。 断面が変化をもつ棒の引張りと圧縮る。 はる応力とひずみについて理解できる。 はる応力とひずみについて理解できる。		
授業計	ティブラー:	多上の区分ニング週1週2週3週4週5週6週7週8週9週10週	予 □ ICT 利用 授業内容 ガイダンス カ学の基礎(1) カ学の基礎(2) 応力とひずみ(1) 応力とひずみ(2) 引張りと圧縮(1) 引張りと圧縮(2) 中間試験		応 週ごとの到達目標 ガイダンス カ学の基礎を理解 おの釣かな 反力を できる いっぱい できる できる かかけ おいてきる できる かん かん かん かん かん できる かん	□ 実務経験のある教員による授業できる。自由物体図を描けるようにける。ることができる。でき、求めることができる。ックの法則と弾性係数について理解ついて理解できる。 断面が変化をもつ棒の引張りと圧縮る。 よる応力とひずみについて理解でき 熱応力について理解できる。 とねじり変形について理解し、計算・ 題について理解し、計算することが		
授業計	ティブラー <u>:</u> 画	多上の区分ニング週1週2週3週4週5週6週7週8週9週10週11週	図 ICT 利用 図 ICT 利用 授業内容 ガイダンス 力学の基礎(1) 力学の基礎(2) 応力とひずみ(1) 応力とひずみ(2) 引張りと圧縮(1) 引張りと圧縮(2) 中間試験 ねじり(1) ねじり(2) ねじり(3)		応 週ごとの到達目標 ガイダの みことの カイダの 表示の かかり ない かった	□ 実務経験のある教員による授業できる。自由物体図を描けるようにける。ることができる。でき、求めることができる。ックの法則と弾性係数について理解ついて理解できる。 断面が変化をもつ棒の引張りと圧縮る。 よる応力とひずみについて理解でき 熱応力について理解できる。 とねじり変形について理解し、計算・ 題について理解し、計算することが		
	ティブラー:	多上の区分ニング週1週2週3週4週5週6週7週8週9週10週	図 ICT 利用 授業内容 ガイダンス カ学の基礎(1) カ学の基礎(2) 応力とひずみ(1) 応力とひすみ(2) 引張りと圧縮(1) 引張りと圧縮(2) 中間試験 ねじり(1) ねじり(2)		応 週ごとの到達目標 ガイダの ス カ学の かった	□ 実務経験のある教員による授業できる。自由物体図を描けるようにける。 ることができる。でき、求めることができる。 ックの法則と弾性係数について理解 ついて理解できる。 断面が変化をもつ棒の引張りと圧縮る。 はよる応力とひずみについて理解できる。 とねじり変形について理解できる。 とねじり変形について理解し、計算・ 題について理解し、計算することが じりについて理解できる。 て理解できる。		
授業計	ティブラー <u>:</u> 画	多上の区分ニング週1週2週3週4週5週6週7週8週9週10週11週	図 ICT 利用 図 ICT 利用 授業内容 ガイダンス 力学の基礎(1) 力学の基礎(2) 応力とひずみ(1) 応力とひずみ(2) 引張りと圧縮(1) 引張りと圧縮(2) 中間試験 ねじり(1) ねじり(2) ねじり(3)	□ 遠隔授業対応	応 週ごとの到達目標 ガイダのシス から かっかっ かっかっ かっかっ かっかっ かっかっ かっかっ かっかっ	□ 実務経験のある教員による授業できる。自由物体図を描けるようにける。ることができる。でき、求めることができる。ックの法則と弾性係数について理解ついて理解できる。 断面が変化をもつ棒の引張りと圧縮る。 よる応力とひずみについて理解でき 熱応力について理解できる。 とねじり変形について理解し、計算・ 題について理解し、計算することが		

		15词	 割	演習								
		16词	 <u></u>	演習	真習							
		1週		はりの応力(1)					はりの曲げ応力について理解しできる.			
		2週		はりの応力(2)					横断面の図心と断面二次モ- , 計算することができる.	-メントについ	て理解し	
		3週		はりの	D応力 (3)				求まった断面二次モーメント げ応力を計算することができ	用いて,曲		
		4週		はりの	りたわみ (1))			はりのたわみ曲線について理			
	3rdQ	5週		はりの	のたわみ(2))			はりのたわみの微分方程式による解法について理解できる.			
		6週		はりの	かたわみ (3))			はりのたわみの微分方程式を解いて「たわみ」, 「たわみ角」を求めることが出来る.			
		7週		はりの	かたわみ(4))			重ね合わせによって「たわ∂ ることが出来る.	み」, 「たわみ	角」を求め	
後期 		8週		中間試験								
		9週	複雑な		夏雑なはりの問題(1)			不静定はりについて理解できる。 微分方程式から式を増やす方法を理解する。				
		10边	<u></u>	複雑な	はりの問題	(2)			重ね合わせを用いて式を増やす方法を理解する.			
		11边	<u> </u>	複雑なはりの問題(3)					不静定はりについて,反力,反モーメントを計算で: る.			
	4thQ	12词	<u> </u>	複雑な	なはりの問題	(4)	(4) 不静定はりについて, SFD , たわみを求めることが出		, BMD, 曲げモーメント 来る.			
		13边	<u></u>	演習								
		14近	<u> </u>	演習	ਬ ਜ							
		15边	<u> </u>	演習								
		16վ	_	演習								
モデルニ	アカリキ	-그=	ラムの	学習	内容と到達	目標						
分類	分類				学習内容	学習	内容の到達目標			到達レベル	授業週	
						物体に作用する力を図示することができる。		4				
						力の合成と分解をすることができる。		4				
						重力、抗力、張力、圧力について説明できる。		4				
 基礎的能力	」 自然科学	学物理			 力学	フックの法則を用いて、弾性力の大きさを求めることができる。		4				
1,000	,	1,30-2	1,5- 1		733	質点にはたらく力のつりあいの問題を解くことができる。		4				
						力のモーメントを求めることができる。		4				
					剛体における力のつり合いに関する計算ができる。		4					
						重心(重心に関する計算ができる。			3		
評価割合	ì											
試験							課題		É	合計		
-							10	0		100		
基礎的能力 45							5	0		50		
専門的能力 45 45						5	0		50			
分野横断的	能力		0	0			0	0	C)		