鶴岡	工業高等	 専門学校	開講年度	023年度) 授業科目			ロボット機構学					
科目基礎	营情報				•	•						
科目番号 0055					科目区分	車	<u></u> 門 / 必	修				
授業形態		講義			単位の種別と単			-				
開設学科		創造工学	科(情報コース)	対象学年	4	ļ						
開設期		通年		週時間数	2							
教科書/教	材	書名:機	構学,著者:森田均	1, 発行所: サイエ	ンス社							
担当教員 今野 健一												
到達目標	Ē											
瞬間中心を アクチコ	を利用して機 1エータの仕	機構の運動を 比組みと役割	解析できる. 各種機 を説明できる.	機構の運動を説明で	き, これらを用い	\た機構を	設計でき	きる. ロボットを構成するセンサー				
ルーブリック												
			理想的な到達レ	ベルの目安	標準的な到達レベルの目安			未到達レベルの目安				
瞬間中心			瞬間中心を求め		3瞬間中心の定理を説明できる.			機構の瞬間中心を求めることができない.				
機構の速度	ŧ		瞬間中心を利用 , 角速度を作図, めることができ	して,機構の速度 , 計算によって求 る.	作図によって機構の速度,角速度 を求めることができる.			機構の速度を求めることができない.				
各機構の週	重動			 を説明でき, これ	各種機構の運動を計算で求めるこ とができる.			各種機構の運動を計算で求めることができない.				
		目との関										
		:情報技術を	身につける。									
教育方法	5等	T										
日本中で活 概要			5躍している産業用ロボットも見ればわかるように,機械は適切に制御されてはじめて便利な装置になる.こ は,機械制御技術者に必要とされる,機械運動の仕組みについて説明する.はじめに機械運動の基礎を扱い 5機構について順に説明する.									
授業の進め	り方・方法	評価は前	期後期がともに50%	6, それぞれ中間試	.験35%, 期末試	験35%,し	ノポート	等提出物30%とする.				
注意点		理解が不	十分と感じたらオフ	フィスアワーを積極	的に活用すること	<u>.</u> .						
事前・事	後学習、	オフィス	アワー									
【オフィス	スアワー】授	受業日の16:0	00-17:00, ほか随	寺.								
授業の属	属性・履修	圣上の区分										
□ アクテ	・ィブラーニ	ング	□ ICT 利用		□ 遠隔授業対応	芯		□ 実務経験のある教員による授業				
授業計画	1											
			授業内容			週ごとの	到達目標	西 示				
			機械運動の基礎					用して機械の動作を設計できる.				
			瞬間中心			瞬間中心を求めることができる.						
		3週	3瞬間中心の定理	(1)		3瞬間中心の定理を説明できる。						
		4週	3瞬間中心の定理			とができ	門中心の定理を用いて未知の瞬間中心を求めるこ ざきる. こよって機構における速度・角速度を求めること					
	1stQ	5週	機構における速度 · 	・角速度(1) 		ができる).					
		6週	機構における速度・	・角速度(2)		ができる		構における速度・角速度を求めること 				
		7週	機構における速度・	・角速度(3)		計算によって機構における速度・角速度 ができる.						
		8週	前期中間試験									
前期 	2ndQ	9週	摩擦伝動装置(1)			転がり接						
		10週	摩擦伝動装置(2)			摩擦伝動ができる	摩擦伝動におけるだ円車の角速度, 速比を求めること ができる.					
		11週	摩擦伝動装置(3)				摩擦伝動における円すい車の角速度, 速比を求めるこ とができる.					
		12週	摩擦伝動装置(4)			ることが	伝動における無段変速装置の角速度, 速比を求め とができる.					
		13週	歯車装置(1)			できる.		ける歯形の条件, インボリュート歯形を説明 				
		<u> </u>	歯車装置(2)			歯車列の	歯車列の回転数を求めることができる.					
		 	前期末試験			-						
後期	3rdQ	16週	<u> </u>			\#= \F-	TI ~					
		 	歯車装置(3) 歩車装置(4)			+	遊星歯車列の回転数を求めることができる					
			歯車装置(4)			遊星歯車列の回転数を求めることができる. カムの回転による従動節の変位,速度,加速度を求め						
		3週	カム装置(1)			カムの回転による従動即の変位、速度、加速度を求め ることができる。						
		4週	カム装置(2)			従動節の	変位から	らカムの輪郭を描くことができる.				
		5週	リンク装置(1)			て <i>こ</i> クラ できる.	こクランク機構において,グラスホフの定理を説明 きる.また,てこの揺動角度を求めることができる					
		6週	リンク装置(2)			・ 往復スラ 求めるこ	イダクラ	フランク機構においてスライダの速度を ごきる.				

		7週	リンク	ク装置 (3)			各種リンク機構の	重動を説明	することが	できる.	
		8週	後期中間試験								
		9週	巻掛け伝動装置(1)				巻き掛け伝動において、ベルトの長さと巻き掛け角度 を求めることができる.				
		10週	巻掛け伝動装置 (2)				巻き掛け伝動において,ベルトの張力を求めることが できる.				
		11週	巻掛り	ナ伝動装置(3) , ねじ機構		チェーン伝動において、チェーンの最大、最小速度を 求めることができる.ねじ機構の運動を説明できる.				
4thQ		12週	ロボッ	ットアームの	幾構		ロボットアームの機構について説明できる.				
	,	13週	ロボットアームにおけるセンサー, アクチュエータ (1)				ロボットアームのセンサー, アクチュエータについて 説明できる.				
		14週	ロボッ (2)	ットアームにる	おけるセンサー, ご	ロボットアームのセンサー, アクチュエータについて 説明できる.					
		15週	後期末試験								
		16週									
モデルコアカリキュラムの学習内容と到達目標											
分類 分野			学習内容の到達目標				到達レベル 授業週				
評価割合											
i		試験	発	 表	相互評価	態度	ポートフォリオ	その他	合	<u></u>	
総合評価割合		70	0		0	0	0	30	10	0	
基礎的能力		20			0	0	0	0	20		
専門的能力		50			0	0	0	30	80		
分野横断的能力		0			0	0	0	0 0			