苫小牧工業高等専門学校		開講年度	平成29年度 (2	2017年度)	授業科目	物理化学Ⅱ				
科目基礎情報										
科目番号	S3-5062			科目区分	専門 / 必	修				
授業形態	授業			単位の種別と単位数	数 履修単位	履修単位: 2				
開設学科	物質工学科			対象学年	3	3				
開設期	通年			週時間数	前期:2 後	前期:2 後期:2				
教科書: 福地賢治著 「物理化学」 実教出版 / 教材: 1) P.W.Atkins著 千原秀昭・中村亘男訳「アトキンス物理化学 第6版」東京化学同人,2) David W.Ball著 田中一義・阿竹徹監訳「ボール 物理化学」化学同人,3) W.J.Moore著 細矢治夫・湯田坂雅子訳「ムーア 基礎物理化学」東京化学同人,4) D.A.McQuarrie, J.D.Simon著千原英昭・齊藤一弥・江口太郎訳「物理化学 – 分子論的アプローチ」東京化学同人,5) 米山宏著「電気化学」大日本図書.										
担当教員	甲野 裕之									
1										

到達目標

化学反応を熱力学を用いてその熱収支に基づいて、その進行方向を判断できること。また反応速度論を把握し、反応次数や速度定数を決定できること。コロイド粒子についてその種類を把握した上で、コロイド界面での現象を理解できること。電池反応について各電極における酸化・還元反応を理解し、ネルンストの式に基づいて起電力を求めることができること。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
1) 気体の法則について正しく理解できる。	気体の法則について正しく理解できる。	気体の法則について理解できる。	気体の法則について理解できない。
2) 熱力学第一法則を理解し、エ ネルギー保存則により、エンタル ピー、仕事、内部エネルギーを求 めることができる。	熱力学第一法則を理解し、エネル ギー保存則により、エンタルピー 、仕事、内部エネルギーを求める ことができる。	熱力学第一法則を理解し、エネル ギー保存則により、エンタルピー 、仕事、内部エネルギーを求める ことができる。	熱力学第一法則を理解できない。 エネルギー保存則が理解できない。
3) 熱力学第二・第三法則を説明でき、エントロピーと化学変化の方向について説明できる。	熱力学第二・第三法則を説明でき 、エントロピーと化学変化の方向 について計算から正しく求めるこ とができる。	熱力学第二・第三法則を説明でき 、エントロピーと化学変化の方向 について計算ができる。	熱力学第二・第三法則を説明できない。エントロピーと化学変化の方向について計算から求めることができない。
4) 化学平衡についいて理解し、 ギブズエネルギーと平衡定数を求 めることができる。	化学平衡について理解し、ギブズ エネルギーと平衡定数を求めるこ とができる。	化学平衡の基本的な事項について 理解し、ギブズエネルギーと平衡 定数を求めることができる。	化学平衡について理解できない。 ギブズエネルギーと平衡定数を求めることができない。
5) コロイド粒子の基礎について 理解し、説明できる。	コロイド現象について正しく説明 でき、運動的性質を説明できる。	コロイド現象について理解でき、 運動的性質を説明できる。	コロイド現象について説明できない。またその運動的性質を説明できない。
6) 電池反応を理解し、ルンストの式から起電力を求めることができる。	電池反応を理解し、ルンストの式 から起電力を求めることができる。	ネルンストの式から起電力を求め ることができる。	ルンストの式から起電力を求める ことができない。
7) 反応次数、反応速度定数、半減期を計算することができる。アレニウスの式から活性化エネルギーを求めることができる。	反応次数、反応速度定数、半減期 を計算することができる。アレニ ウスの式から活性化エネルギーを 求めることができる。	反応次数、反応速度定数、半減期 を計算することができる。アレニ ウスの式と活性化エネルギーの関 係を理解できる。	反応次数、反応速度定数、半減期 を計算することができない。活性 化エネルギーを求めることができ ない。
	_		

学科の到達目標項目との関係

物質工学科の学習・教育到達目標 1 数学,自然科学,情報技術および物質工学基礎,無機化学 $I \cdot II$,有機化学 $I \cdot II$,分析化学 $I \cdot II$,物理化学 $I \cdot II$,分子生物学,化学熱力学,応用数学,応用物理,物質工学実験などを通して,工学の基礎知識と応用力を身につけ る。 学習目標 II 実践性 学校目標 D (工学基礎) 数学,自然科学,情報技術および工学の基礎知識と応用力を身につける 本科の点検項目 D − ii 自然科学に関する基礎的な問題を解くことができる

概要	物理化学をにおける「気体の性質」、「熱力学第一法則」、「熱力学第二・第三法則」、「化学平衡」、「コロイドと 界面化学」、「反応速度論」についてその基本について教授する。
授業の進め方・方法	「物理化学 I 」で学習した基礎知識を基に、より実践的な内容について説明する。主に座学形式で実施し、適宜演習と課題により、その内容の理解度を高める。講義前には教科書の該当部分を予習し、授業終了後には学習内容について復習を心がけること。講義時にはノート、筆記用具、関数電卓を持参すること。ルーブリックへの評価は評価割合に従って決定する(各到達目標にについて演習・課題(20%)、中間試験(40%)、定期試験(40%)で評価し、合格点は60点以上とする)。
注意点	評価が60点に満たない者について再試験は原則実施しないが、授業態度、授業への取組みを考慮した上で実施する場合がある。なお再試験受験者の評価は60点を越えないものとする。

授業計画

		週	授業内容	週ごとの到達目標			
		1週	気体の性質(1) 気体の法則	気体の法則を理解できる。			
		2週	気体の法則(2) 気体の法則と分子速度	気体の分子速度を求めることができる。			
		3週	 気体の性質(1) 気体の法則 気体の法則を理解できる。 気体の法則(2) 気体の法則と分子速度 気体の分子速度を求めること 気体の法則(3) 混合気体 混合気体の分圧の計算ができる。 熱力学第一法則(1) 熱と仕事 熱力学第一法則(2) 熱と仕事 熱力学第一法則(3) 内部エネルギー 内部エネルギーについて説明できる。 熱力学第一法則(4) エネルギー保存の法則 熱・仕事・内部エネルギーについて説明がら求めることではよりに計算から求めることではよりに対けら求めることではあります。 熱力学第二・第三法則(1) エントロピー変化量 熱力学第二・第三法則(2) 第三法則とエントロピー変化量 熱力学第二・第三法則(3) ギブズエネルギーの定義 ギブズエネルギーについて説明できる。 熱力学第二・第三法則(3) ギブズエネルギーの定義 	混合気体の分圧の計算ができる。			
		4週	熱力学第一法則(1) 熱と仕事	熱と仕事について説明できる。			
	1stQ	5週	熱力学第一法則(2) 熱と仕事	熱エネルギーと仕事が交換可能なことを説明できる。			
		6週	熱力学第一法則(3) 内部エネルギー	内部エネルギーについて説明できる。			
前期		7週	熱力学第一法則(4) エネルギー保存の法則	熱・仕事・内部エネルギーに関して、熱力学第一法則 に基づいて計算から求めることができる。			
		8週	熱力学第一法則(5) 反応熱と熱容量	熱容量の定義と反応熱について理解できる。			
		9週	熱力学第二・第三法則(1) エントロピー変化量	化学反応におけるエントロピー変化量を計算できる。			
	2-40	10週	熱力学第二・第三法則(2) 第三法則とエントロピー	標準エントロピーとエントロピー変化について説明できる。			
	2ndQ	11週	熱力学第二・第三法則(3) ギブズエネルギーの定義	ギブズエネルギーについて説明できる。			
		12週	熱力学第二・第三法則(4) ギブスエネルギーと変 化の方向	ギブスエネルギーから化学変化の方向を予測できる。 触媒の機能を熱力学的視点で説明できる。			

			## 1 3	<u> </u>	**************************************				
		13週			法則(5) ギブスエネルギーと変	触媒の機能を熱力学的視点で	説明できる。		
		14週			ルシャトリエの原理	ルシャトリエの原理について			
		15週	化学	平衡(2)	化学平衡と平衡定数	平衡定数を求めることができ	る。		
		16週	/1/247	T/45 (2)	可偽造物 L=¥夕 /H の見/郷	タチタルホルにから 五条ウ料	ナナムファト	・ボネナフ	
		1週	16子-		平衡定数と諸条件の影響	古世条件変化に伴う平衡正数 均一反応、不均一反応の違い	<u>数を求めることができる。</u> 、とこれに同体における7		
		2週	化学	平衡(4)	均一系と不均一系での化学平衡	類定数を求めることができる	で これ い フ	ري (۱۸ دوء) بر	
		3週	+	イド界面の化		コロイドの性質を理解できる。			
	2 10	4週	+	イド界面の化		コロイドを理解して実例を説			
	3rdQ	5週		イド界面の化	学(3) コロイドの分子運動				
		6週		イドと界面の	化学(4) 乳化と界面活性剤	界面活性剤の種類、性質、乳化とぬれについて説 きる。			
		7週	電気化	七学(1)	ネルンストの式	ネルンストの式を用いて起電力を計算できる。		きる。	
		8週	電気化		平衡定数とネルンストの式①	起電力、自由エネルギー、平衡定数との関係性をできる。		係性を説	
朔		9週	電気化		平衡定数とネルンストの式②	電池反応の起電力、平衡定数、自由エネルギー て計算できる。		<i>、</i> ギーにつ	
		10週	電気化		電気分解と各種実用電池	電気分解について説明できる。実用電池の種類と特について説明できる。			
		11週	反応	速度論(1)	化学反応の定義	反応速度と衝突理論について	こ説明できる。		
	4thQ	12週	反応は	速度論(2)	反応次数とその特徴	各種反応における反応速度を きる。	を計算から求めることが [*] 		
		13週	反応は	速度論(3)	0				
				応速度論(4) 放射線の種類と半減期 放射線の種類を説明できる。 ことができる。					
				「応速度論(5) 核分裂と核融合 核分裂と核融合について説		核分裂と核融合について説明	できる。		
	—	16週 -	~ *** 		±				
	アカリヨ		リ子省	内容と到達			7미국 NI	松光田	
類	T	分野		学習内容	学習内容の到達目標		到達レベル 4	授業週 後14	
					放射性元素の半減期と安定性を説明	できる。	4	後14	
					年代測定の例として、C14による時		4	後14,後:	
					核分裂と核融合のエネルギー利用を	説明できる。	4	後15	
					気体の法則を理解して、理想気体の	 方程式を説明できる。	4	前1	
					気体の分子速度論から、圧力を定義 明できる。	して、理想気体の方程式を証	4	前1	
					実在気体の特徴と状態方程式を説明	できる。	4	前2	
					臨界現象と臨界点近傍の特徴を説明	できる。	4	前2	
					混合気体の分圧の計算ができる。		4	前3	
					純物質の状態図(P-V、P-T)を理解しる。		3	後1,後3	
					2成分の状態図(P-x、y、T-x、y)を きる。	理解して、気液平衡を説明で	3	後1,後3	
					東一的性質を説明できる。		3	後2,後3	
				蒸気圧降下、沸点上昇より、溶質の分子量を計算できる。			3	後2,後3	
専門的能力	公田区口はる	の事「ル学	. / /m		凝固点降下と浸透圧より、溶質の分相律の定義を理解して、純物質、混組成りを計算し、変換は能を説明で		3	後2,後3 後1,後2	
	分野別 <i>0</i> 門工学	別の等 1亿字・ 学 系分野	堂・生物 │ 分野	物理化学	組成)を計算し、平衡状態を説明できる。 熱力学の第一法則の定義と適用方法を説明できる。		4	前4	
							4	前5	
					化合物の標準生成エンタルピーを計算できる。		4	前5,前6, 7	
							4	前6,前7	
					内部エネルギー、熱容量の定義と適		4	前5,前6 7	
					平衡の記述(質量作用の法則)を説明	ブキス	4	前12	
					一(其)少品处(其里(F用(V))(A)(F)(产品的	CC 200	4	HUIL	
					諸条件の影響(ルシャトリエの法則)	を説明できる。	4	前13,前1	

均一および不均一反応の平衡を説明できる。

純物質の絶対エントロピーを計算できる。

平衡定数の温度依存性を計算できる。

化学反応でのエントロピー変化を計算できる。

化合物の標準生成自由エネルギーを計算できる。

熱力学の第二・第三法則の定義と適用方法を説明できる。

反応における自由エネルギー変化より、平衡定数・組成を計算で きる。

前9,前 10,前11,前 12

前10,前 11,前12

前15

前8

前8

前9

前9

4

4

4

4

4

4

		気体の等る。	温、定圧、定容およ	び断熱変化のdU、W	/、Qを計算でき	4	前10,前 11,前12
		反応速度	の定義を理解して、	実験的決定方法を説	明できる。	4	後11
				念を理解して、計算	により求めるこ	4	後12
		微分式と	積分式が相互に変換	できて半減期が求め	られる。	4	後13
		コロイド	と界面の定義・特徴	を説明できる。		4	後4
		表面張力	の定義を理解して、	測定法・計算法を説	明できる。	4	後6
		コロイド	の分類を理解して、	身近な実例を説明で	きる。	4	後4
				ラウン運動、沈降、	粘度、拡散等	4	後5
		界面活性	剤の種類と性質を説	明できる。		4	後7
		乳化とそ	の実例を説明できる	00		4	後7
		ぬれの理	論を定量的に説明で	きる。		4	後7
		連続反応	、可逆反応、併発反	応等を理解している	•	4	後11
		律速段階	近似、定常状態近似	(等を理解し、応用で	きる。	4	後11
		衝突理論	を理解して、アレニ	ウスプロットを説明	できる。	4	後11
		活性錯合	体理論を理解して、	アイリングプロット	を説明できる。	4	後11
							後12
		触媒の性 できる。	質・構造を理解して	、活性化エネルギー	との関係を説明	4	後13
		表面の触	媒活性を理解して、	代表的な触媒反応を	説明できる。	4	後13
		ネルンス 関係が説	トの式を用いて、起 明できる。	電力、自由エネルギ	ー、平衡定数の	4	後8,後9
		電池反応	と電気分解を理解し	、実用例を説明でき	 る。	4	後10
前期中間試験	前期	用定期試験	後期中間試験	後期定期試験	課題(演習問題	題)	合計
20	20		20	20	20		100
$\overline{}$			16	16	16		80
16	16		10	10	110		80
	1337 43 1 1=34=4.32	1557 45 1 1-54-4554 1557 4	る。 反応速度 反応が	る。 反応速度の定義を理解して、 反応速度定数、反応次数の概とができる。 微分式と積分式が相互に変換 コロイドと界面の定義・特徴 表面張力の定義を理解して、 コロイドの分類を理解して、 コロイドの分類を理解して、 コロイドの通動学的性質(ブ)を説明できる。 界面活性剤の種類と性質を訪 乳化とその実例を説明できる。 ねれの理論を定量的に説明で連続反応、可逆反応、併発反律速段階近似、定常状態近似 衝突理論を理解して、アレニ活性錯合体理論を理解して、 活性状態のエンタルピー、エを定量的に説明できる。 触媒の性質・構造を理解してできる。 表面の触媒活性を理解して、ネルンストの式を用いて、起関係が説明できる。 電池反応と電気分解を理解して、起関係が説明できる。 電池反応と電気分解を理解して、起関係が説明できる。 電池反応と電気分解を理解して、 を期間に対象	る。 反応速度の定義を理解して、実験的決定方法を説 反応速度定数、反応次数の概念を理解して、計算 とができる。 微分式と積分式が相互に変換できて半減期が求め コロイドと界面の定義・特徴を説明できる。 表面張力の定義を理解して、測定法・計算法を説 コロイドの分類を理解して、身近な実例を説明で コロイドの運動学的性質(ブラウン運動、沈降、)を説明できる。 界面活性剤の種類と性質を説明できる。 乳化とその実例を説明できる。 連続反応、可逆反応、併発反応等を理解している 律速段階近似、定常状態近似等を理解し、応用で 衝突理論を理解して、アレニウスプロットを説明 活性錯合体理論を理解して、アイリングプロット 活性状態のエンタルピー、エントロピー、自由エを定量的に説明できる。 触媒の性質・構造を理解して、活性化エネルギーできる。 表面の触媒活性を理解して、代表的な触媒反応を ネルンストの式を用いて、起電力、自由エネルギ関係が説明できる。 電池反応と電気分解を理解し、実用例を説明でき 前期中間試験 前期定期試験 後期中間試験 後期定期試験	る。 反応速度の定義を理解して、実験的決定方法を説明できる。 反応速度定数、反応次数の概念を理解して、計算により求めることができる。 微分式と積分式が相互に変換できて半減期が求められる。 コロイドと界面の定義・特徴を説明できる。 表面張力の定義を理解して、別定法・計算法を説明できる。 コロイドの分類を理解して、身近な実例を説明できる。 コロイドの通動学的性質(ブラウン運動、沈降、粘度、拡散等))を説明できる。 界面活性剤の種類と性質を説明できる。 乳化とその実例を説明できる。 乳化とその実例を説明できる。 連続反応、可逆反応、併発反応等を理解している。 律速段階近似、定常状態近似等を理解し、応用できる。 衝突理論を理解して、アノリングブロットを説明できる。 活性状態のエンタルピー、アイリングブロットを説明できる。 活性状態のエンタルピー、エントロピー、自由エネルギーの関係を定量的に説明できる。 活性状態のエンタルピー、エントロピー、自由エネルギーの関係を定量的に説明できる。 触媒の性質・構造を理解して、活性化エネルギーとの関係を説明できる。 たたと電気分解を理解して、代表的な触媒反応を説明できる。 表面の触媒活性を理解して、代表的な触媒反応を説明できる。 表面の触媒活性を理解して、代表的な触媒反応を説明できる。 本ルンストの式を用いて、起電力、自由エネルギー、平衡定数の関係が説明できる。 電池反応と電気分解を理解し、実用例を説明できる。	反応速度の定義を理解して、実験的決定方法を説明できる。 4 反応速度定数、反応次数の概念を理解して、計算により求めるこ 4 微分式と積分式が相互に変換できて半減期が求められる。 4 コロイドと界面の定義・特徴を説明できる。 4 表面張力の定義を理解して、測定法・計算法を説明できる。 4 コロイドの分類を理解して、測定法・計算法を説明できる。 4 コロイドの分類を理解して、身近な実例を説明できる。 4 コロイドの運動学的性質(ブラウン運動、沈降、粘度、拡散等 4 を説明できる。 7 を説明できる。 4 現化とその実例を説明できる。 4 現化とその実例を説明できる。 4 強悲反応、可逆反応、併発反応等を理解している。 4 連続反応、可逆反応、併発反応等を理解している。 4 連続反応、可逆反応、併発反応等を理解して、応用できる。 4 衝突理論を理解して、アノロウスプロットを説明できる。 4 活性健合体理論を理解して、アノロウスプロットを説明できる。 4 活性生命体理論を理解して、アノロウスプロットを説明できる。 4 活性生命体理論を理解して、アイリングプロットを説明できる。 4 活性生命体理論を理解して、デレーウスプロットを説明できる。 4 活性は合体理論を理解して、デレーウスプロットを説明できる。 4 オルンストの式を開いて、活性化エネルギーとの関係を説明できる。 2 乗属の触媒活性を理解して、代表的な触媒反応を説明できる。 4 表面の触媒活性を理解して、代表的な触媒反応を説明できる。 4 表面の触媒活性を理解して、代表的な触媒反応を説明できる。 4 本ルシストの式を用いて、起電力、自由エネルギー、平衡定数の 4 電池反応と電気分解を理解し、実用例を説明できる。 4