 徳J	 山工業高等		開講年度 令和04年度	(2022年度)	授業科目	生体機械力学			
科目基础									
科目番号		0030		科目区分	専門/選	択			
授業形態		講義		単位の種別と単位					
開設学科		機械制御		対象学年	専2				
開設期		前期		週時間数	2				
教科書/教		N Ozkav	/a・M Nordin「Fundamentals of B	1					
担当教員		櫻本 逸		(0)	90.7				
<u></u>		112.1.2							
複合分野 ①バイオ ②バイオ ③バイオ	の設計能力 メカニクス メカニクス メカニクス	に対応したた に対応したも の静力学への	らため、以下の項目を到達目標とする カベクトルについて理解し、課題に対 ニーメントベクトルについて理解し、 砂適用について理解し、課題に対する シントについて理解し、課題に対する	する計算を行うことだ 課題に対する計算を行 計算を行うことができ	テうことができる きる。	5.			
ルーブ	リック								
			理想的な到達レベルの目安	標準的な到達レベ	 ジルの目安	未到達レベルの目安			
到達目標	(1)		カベクトルについて理解し、課題 に対する計算を間違いなく行うこ とができる。	① カベクトルについ 課題に対する基本 ことができる。	へてほぼ理解し、 のな計算を行う	カベクトルについての理解が不十分であり、課題に対する計算を行うことができない。			
到達目標	(2)		モーメントベクトルについて理所 し、課題に対する計算を間違いた く行うことができる。		する基本的な計	モーメントベクトルについての理解が不十分であり、課題に対する計算を行うことができない。			
到達目標	(3)		静力学の適用について理解し、診 題に対する計算を間違いなく行う ことができる。	静力学の適用についまする基本うことができる。	いてほぼ理解し 基本的な計算を行	静力学の適用についての理解が不 十分であり、課題に対する計算を 行うことができない。			
到達目標④			人体の各関節に働く力とモーメントについて理解し、課題に対する 計算を間違いなく行うことができ る。	3 トについてほぼ理	腱し、課題に対	トについての理解が不十分であり			
学科の	到達目標」	項目との関]係						
到達目標 JABEE c-	-3								
教育方法	法等								
概要		流体力学 て認識さ すの 展開 授業は ポイント	カニクスは、比較的新しい学問分野である。また、生物学的問題を対象とし、静力学、動力学、剛体の力学、などが含まれた古典力学の応用として位置づけられており、従来の工学の実用的な理論や方法論の発展形としている。したがって、機械工学で学んだ事項は、そのまま生体組織の解析やそれに関する機器の設計に使用が可能である。本授業では、生体そのものの解析やそれに関する材料などを学習し、力学のバイオメカニクスと適用を行うことを目的としている。力学の復習を織り交ぜながら、生体に関する知識の習得を行う。 語のテキストを使用し、基本的に輪講形式とする。各時間ごとに担当を決め、和訳したテキストの内容およびとなるべき部分を説明させ、その都度こちらから質問や補足説明を加える。講義以外の自学自習により、次の						
授業の進	め方・方法	授の・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	の予習を行い、担当者は和訳の作成 以下のような自学自修を必要とする 習として教科書の該当ページを予習 ポートの作成(計30時間) しポートのための作成方法の学習時 調査時間(10時間) 時間(10時間) 時間(10時間) ポートの作成(計10時間) ポートの作成のための演習解答時間	を行う。なお、和訳に , 復習する. 毎回1.5時 間 (2時間)	は、後日提出させ	tる。また、この科目は学修単位科目			
注意点)%、試験50%と				
	属性・履何	修上の区分							
	ティブラーニ		□ ICT 利用	☑ 遠隔授業対応		□ 実務経験のある教員による授業			
				•					
授業計词	面								
		週	授業内容	1;	 週ごとの到達目相				
		1週	バイオメカニクスの概略	ľ		。 スの概略を理解できる。			
前期		2週	1章.力学の分類 4節まで実施			スの基本的な概念を理解できる。			
		3週	2章.カベクトル	,	バイオメカニクス	への基本的な概念を生産できる。 スに対応した力の定義や力系、力の種 こついて理解できる。			
		4週	3章.モーメントとトルク(1節~6)		バイオメカニクスに対応したモーメントとモーメント ベクトルの定義やその詳細について理解できる。				
	1stQ	5週	 3章.モーメントとトルク(7節〜9f	節) ::	バイオメカニクスに対応した偶力や偶力モーメント、 力の移動、ベクトル積としてのモーメントなどについ て理解できる。				
前期	1300				バイオメカニクスに対応した平衡状態におけるシステムの解析を理解できる。				
前期	1300	6週	4章.静力学(1節~7節)		ムの解析を理解す	できる。			
前期		6週	4章.静力学(1節~7節) 4章.静力学(8節~10節)		ムの解析を理解 ⁻ 機械部品の支持 [・]				
前期				; ;	ムの解析を理解 機械部品の支持や 合図を、バイオン 。 バイオメカニクン 定方法などについ	できる。 や接続方法の種類とそれらの力の釣り メカニクスの例との対照で考察できる スに対応した摩擦を含む系や重心の決			

	.0週 5章	き.バイオメ	カニ٬	クスへの静力学の応	用(肘関節の力	肘関節に関して、構成する骨 び、静力学を適用して各部に			
				クスへの静力学の応		肩関節に関して、構成する骨 び、静力学を適用して各部に	で筋肉の詳細 加わる力を解		
1	.2週 5章			クスへの静力学の応		育柱に関して、構成する骨や筋肉の詳細な構造を学び 、静力学を適用して各部に加わる力を解析できる。			
	.3週 5寸	き.バイオメ	カニクスへの静力学の応用(股関節の力 股関節に関して、構成する骨 び、静力学を適用して各部に						
			バイオメカニクスへの静力学の応用(膝関節のカ 膝関節に関して、骨や筋肉の割				詳細な構造を		
	15周 5章./			章.バイオメカニクスへの静力学の応用(踝関節の力 踝関節に関して、骨や筋肉の調					
F	16週 学)				学を適用して加わる力を解析 バイオメカニクスの静力学へ			 Nての理解を	
¹ モデルコアカリキ <i>:</i>	12-47		立い字			問う英語による出題とする。			
					-		T-15+1	IE WYD	
分類	分野	学習内容	š	学習内容の到達目標			到達レベル	授業週	
				力は、大きさ、向き 、適用できる。	よって表されることを理解し	4	前3		
				一点に作用する力の 算できる。	4	前3			
			Ī	一点に作用する力のつりあい条件を説明できる。				前6	
			Ī	力のモーメントの意味を理解し、計算できる。			4	前4	
			İ	偶力の意味を理解し、偶力のモーメントを計算できる。				前4	
			Ì	着力点が異なる力のつりあい条件を説明できる。			4	前6	
			ŀ	運動の第一法則(慣性の法則)を説明できる。			4	前2	
分野別の連	5	_	•	運動の第二法則を説明でき、力、質量および加速度の関係を運動					
専門的能力 分野別の専門工学	* 機械系分里	野 力学 		方程式で表すことができる。 運動の第三法則(作用反作用の法則)を説明できる。			4	前2	
							4	前2	
			周速度、角速度、回		回転速度の意味を理解し、計算できる。		4	前4	
				向心加速度、向心力、遠心力の意味を理解し、計算できる。			4	前4	
				仕事の意味を理解し、計算できる。			3		
			Ī	てこ、滑車、斜面などを用いる場合の仕事を説明できる。				前6	
			Ī	エネルギーの意味と種類、エネルギー保存の法則を説明できる。					
			Ī	位置エネルギーと運動エネルギーを計算できる。			3		
			Ì	すべり摩擦の意味を理解し、摩擦力と摩擦係数の関係を説明でき			4	前5	
評価割合				る。			'	200	
計1111 古	Λ=1								
W ∧ == / T ≠ I ∧	和訳		演習		輪講状況	試験 合計			
総合評価割合	30		10		10	50 100			
到達目標①	5		0		2	0	7		
到達目標②	5		0		2	0	7		
到達目標③	5		10		2	10	27		
到達目標④	15		0	0 4		40	59		