豊田工業高等専門学校				開講年度 令和04年度 (2022年				F度) 授業科目 統計熱		統計熱力学		
科目基礎情報												
科目番号 9		91016	5 - 5 - 5				科目区分	一般/選択				
授業形態		講義					単位の種別と単位	位数 学修単位:		: 2		
開設学科		情報科学	情報科学専攻						専2			
開設期		後期	後期					週時間数 2				
教科書/教	材	「キッテル 熱物理学」 山下 次郎, 福地 充 共訳(丸善)										
担当教員 大森 有希子												
到達目標												
(ア)孤立系について,多重度関数を求めることができる。 (イ)ボルツマンの原理を理解し,孤立系のエントロピーを求めることができる。 (ウ)熱浴と接した系において,特定の状態が実現する確率が,ボルツマン因子で与えられることを理解する。 (エ)熱浴と接した系について,分配関数,ヘルムホルツの自由エネルギーを求めることができる。 (オ)熱浴と接した系について,系のエネルギー,熱容量を求めることができる。 (カ)熱輻射に関するプランク分布を理解し,簡単な問題を解くことができる。 (キ)固体の比熱に関するデバイの理論を理解し,簡単な問題を解くことができる。 (キ)固体の比熱に関するデバイの理論を理解し,簡単な問題を解くことができる。 (ク)テーラー展開,ガウス積分,階乗に関するスターリングの近似など,適切な数学手法を用いて,目的の計算ができる。												
ルーブリック												
						標準的な到達レベルの目安			未到達レベルの目安			
評価項目(ア)			"	瓜立系について多 ノマンの原理を訪 解くことができる	説明でき, 問題		孤立系について ダッマンの原理を記			孤立系について多重度関数・ボル ツマンの原理を説明できない。		
評価項目(イ)			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	熱浴と接した系に アン因子・分配隊 アの自由エネルキ 問題を解くこと	関数・ヘルムホ ドーを説明でき	൰ᅵ	熱浴と接した系(マン因子・分配! ツの自由エネル= 。	関数・ヘ	ゾレムホル	熱浴と接した系において,ボルツマン因子・分配関数・ヘルムホルッの自由エネルギーを説明できない。		
評価項目(ウ)			付 討	熱輻射に関するこ 体の比熱に関する 説明でき,問題を る。	3デバイの理論	を	熱輻射に関する。 体の比熱に関する 説明できる。	プランク るデバイ	7分布・固 (の理論を	熱輻射に関するプランク分布・固 体の比熱に関するデバイの理論を 説明できない。		
学科の到	」達目標項	目との関	係									
学習・教育到達度目標 A 現実の問題や未知の問題に対して、問題の本質を数理的に捉え、コンピュータシステムを応用した問題解決方法を多角的視野から検討することができる。 JABEE c 数学及び自然科学に関する知識とそれらを応用する能力 本校教育目標 ② 基礎学力												
教育方法	等											
概要	本講義では,統計熱力学を学ぶ。我々の身のまわりで観られる"巨視的"熱現象は,"微視的"な視点で考えると,膨大な資											
授業の進め)方・方法	1170000	21277	201 (0 1912)	10 T-07///07 J F	ם נאן כ	TI COMMEDIA	J1770 C 2	<i>y</i>			
前半で、熱力学的エントロ				学的エントロピ い学生は自習し	ーと統計力学的 てほしい。また	りエン こ, 複	ントロピーが一致で 要雑な計算が多い。	すること ので,う	とを学習す 予習・復習	るが,大学レベルの熱力学の授業を を欠かさぬよう心掛けてほしい。		
選択必修	の種別・	旧カリ科	目名									
授業の属	性・履修	上の区分										
	ィブラーニ			ICT 利用			□ 遠隔授業対応	<u>,</u>		□ 実務経験のある教員による授業		
授業計画	ī											
投耒計 週 -----------------------------------								週ごとの到達目標				
		1週	多重	度関数: 状態	の数え方と多質	重度関	周数 . 平均值			^ 3ことができる。		
後期	3rdQ	2週					・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					
		3週	多重	字目智内容:按 度関数: 状態 学自習内容:授	の数え方と多動	重度関	関数,平均値	めることができる。 平均値を求めることができる。				
		4週	エン	・トロピーと温度 ントロピー増加 :授業内容の予	: 熱平衡, 7]の法則, 熱力等 習・復習を行	ボルソ 学の注 うこと	ソマンの原理 法則(自学自習 上)	熱平衡	を説明でき	ಕる。		
		5週	エントロピーと温度: 熱平衡,ボルツマ ,エントロピー増加の法則,熱力学の法則 内容:授業内容の予習・復習を行うこと)			ソマンの原理 法則(自学自習 上)	ボルツ	ルツマンの原理を説明できる。				
		6週	エントロピーと温度: 熱平衡,ボルツマンの原理,エントロピー増加の法則,熱力学の法則(自学自内容:授業内容の予習・復習を行うこと)			ソマンの原理 法則(自学自習 と)	エントロピー増加の法則を説明できる。					
			エントロピーと温度: 熱平衡,ボルツマンの原理,エントロピー増加の法則,熱力学の法則(自学自習内容:授業内容に関する課題を提出すること)			ソマンの原理 共則(自学自習	熱力学の法則を説明できる。					
		8週	ヘル ・分	ムホルツの自由 配関数, 可逆過 授業内容の予習	 エネルギー : 日由エネル	 ボノ ルギ-	レツマン因子	ボルツ	ボルツマン因子を説明できる。			
	4thQ	9週	ヘルムホルツの自由エネルギー: ボリ , 分配関数, 可逆過程, 自由エネルギー 容: 授業内容の予習・復習を行うこと)			レツマン因子 - (自学自習内	分配関数を説明できる。					

		10週	ヘルムホルツの自 , 分配関数, 可逆 容:授業内容の予	由エネルギー: ボ 過程,自由エネルギ 習・復習を行うこと	ルツマン因子 - (自学自習内)	 可逆過程を説明でき 	きる。			
		11週	ヘルムホルツの自 , 分配関数, 可逆 容:授業内容に関	由エネルギー: ボ 過程, 自由エネルギ する課題を提出する	ルツマン因子 - (自学自習内 こと)	ヘルムホルツの自由	由エネルギーを説明]できる。		
		12週	熱輻射: プラン ノン(デバイの理 習・復習を行うこ	ク分布関数, 黒体輻 論)(自学自習内容 と)	射, 固体のフォ : 授業内容の予	なのフォ 内容の予 黒体輻射・プランク分布関数を説明できる。				
		13週	熱輻射: プラン ノン(デバイの理 習・復習を行うこ	ク分布関数, 黒体輻 論) (自学自習内容 と)	射, 固体のフォ : 授業内容の予	黒体輻射・プランク分布関数を説明できる。				
		14週	熱輻射: プラン ノン(デバイの理 習・復習を行うこ		射, 固体のフォ : 授業内容の予	 固体の比熱に関するデバイの理論を説明できる。 				
		15週	熱輻射: プラン ノン(デバイの理 する課題を提出す	ク分布関数, 黒体輻 論) (自学自習内容 ること)	射, 固体のフォ : 授業内容に関	固体の比熱に関する	るデバイの理論を訪	胡できる。		
	16週									
モデルコアカリキュラムの学習内容と到達目標										
分類 分野			学習内容の到達目標			到達レベル 授業週				
評価割合										
			定期試験		課題		合計			
総合評価割合			50		50		100			
分野横断的能力			50		50		100			