		専門学校	開講年度	令和05年度(2023年度)	授	業科目	材料力学Ⅱ		
科目基礎	情報									
科目番号		0212		科目区分		専門 / 必				
授業形態		授業				立数	履修単位	: 2		
開設学科			生産システム工学科				4			
開設期		通年		週時間数	2					
教科書/教	材		力字,小泉堯監修, d Reinhold Compa		henko, D.H. Your	ng, Elen	nents of	Strength of Materials, Van		
担当教員		川上 健作	F	,						
到達目標	Ē									
2. 各種は 3. 多軸広	りについて カの音味を	たわみ角とだけ で	やせん断応力が計算 たわみが計算できる 面応力状態において 計算でき,不静定は 計算できる.	主応カと主せん.断	応力の大きさと方[きる.	句が計算	「できる.			
ルーブリ	Jック									
			理想的な到達レ	ベルの目安	標準的な到達レ	ベルの目	安	未到達レベルの目安		
評価項目1			はりの曲げ応力質を設計に応用	やせん断応力の計 できる.		の曲げにおいて曲げ応力やせ 応力が計算できる.		はりの曲げにおいて曲げ応力や ん断応力の計算方法を理解してい ない.		
評価項目2			不静定はりについ わみが計算でき	ハてたわみ角とた る.	単純なはりについ わみが計算でき	ハてたれ る.	み角とた	みの計算方法を理解していない.		
評価項目3			主応力と主せんは計に応用できる。	断応力の計算を設	平面応力状態において主応力と主せん断応力の大きさと方向が計算できる.		応力と主 向が計算	多軸応力の意味や平面応力状態(おいて主応力と主せん断応力の) きさと方向の計算方法を理解していない。		
評価項目4			各部材のひずみ: でき, それぞれの 用できる.	エネルギーが計算 の変位の算出に応	各部材のひずみエネルギーが計算 できる.		ーが計算	名部材のひずみエネルギーの求め方を理解していない.		
評価項目5						主の臨界荷重が計算		柱の臨界荷重の計算方法を理解ていない.		
学科の到]達目標項	頁目との関	係							
函館高専教	放育目標 B									
教育方法	等									
概要 解を深め 機械の専			学んだ材料力学の基礎を発展させ、高度な専門知識を習得するために必要な基礎知識を養成し、力学計算の理る、特に材料力学において重要な「はり」の力学状態や変形を正確に求められるようにする。これらの知識を門分野の中で提要できることを到達レベルとする。 政容は公知の情報のみに限定されている。							
授業の進め	か方・方法							の力学について学習します.材料力等		
		式を覚え ますので	授業資料は,Teamsに事前にアップロードしておきます.授業を受ける前に予習をしておいてください. 式を覚えるだけでなくその理論を理解するようにしてください.3年生で履修した「材料力学 I 」の内容を基本としていますので,その内容を復習しておいてく必要があります.また,各授業内容が継続的な内容となるため,各回の授業内容についてしっかり復習することが必要です.							
注意点			※本講義で扱う内容はすべてコアである。機械系の卒業生として習得していて当然の知識として期待されることに留意してほしい。							
		学習・教 ※達成度	育目標評価:課題: を各範囲で達成度確	20%(B),試験 認試験:80%,誤	:80%(B) 果題:20%で評価し), それ	らを平均 [・]	する		
		多上の区分								
□ アクテ	イブラーニ	ング	☑ ICT 利用		□ 遠隔授業対応	<u>,</u>		□ 実務経験のある教員による技		
授業計画	<u> </u>	週	授業内容			油ブレ	 の到達目	西		
						<u> 地</u> ()	シュリモロ作	<u>क</u>		
前期	1stQ	1週	ガイダンス (0.5h) せん断力と曲げモーメント (1.5h) 曲げによる垂直応力 (1h, コア) 曲げによるせん断応力 (1h)			きる		るせん断力と曲げモーメントを計算		
		2週				・各種断面の断面係数を計算できる ・曲げモーメントによって生じる曲げ応力お 分布を計算できる ・曲げによって生じるせん断応力を計算でき				
		3週	たわみ角とたわみ	(2h, コア)		・各種	はりのたれ	つみ角とたわみを計算できる		
		5週	たわみ角とたわみ 達成度確認試験1	<u>りみ角とたわみ(2h, コア)</u> 或度確認試験1		・各種はりのたわみ角とたわみを計算で ・各種断面の断面係数を計算できる ・曲げモーメントによって生じる曲げ応 分布を計算できる ・曲げによって生じるせん断で力を計算		面係数を計算できる トによって生じる曲げ応力およびそ る もじるせん断応力を計算できる		
		6週	 面積モーメント法	積モーメント法(2h)			・各種はりのたわみ角とたわみを計算できる・面積モーメント法により各種はりのたわみみを計算できる			
	_	7週	面積モーメント法	 面積モーメント法(2h)			・面積モーメント法により各種はりのたわみり みを計算できる			
						• 不語	定はりの記			

8週

不静定はり(2h, コア)

・不静定はりの重ね合せ法による解法を理解する ・不静定はりの重複積分法による解法を理解する

		_										
		9週	不静定	主はり(2h, :	コア)		・不静定はりの重ね合せ法に ・不静定はりの重複積分法に	よる解法を理 よる解法を理	解する 解する			
		10週	達成原	達成度確認試験2			・面積モーメント法により各種はりのたわみ角とたわみを計算できる ・不静定はりの重ね合せ法による解法を理解する ・不静定はりの重複積分法による解法を理解する					
		11週	不静定	主はり(2h, :	コア)		・不静定はりの重ね合せ法に ・不静定はりの重複積分法に					
	2ndQ	12週	不静定	主はり(2h, :	コア)		・不静定はりの重ね合せ法に ・不静定はりの重複積分法に					
		13週	不静定	定張り(連続に	はり)(2h, コア)	・連続はりとクラペイロンの 解し,連続はりのSFD,BMI		の定理を理			
		14週	不静定	不静定張り(連続はり)(2h, コア)			・連続はりとクラペイロンの3モーメントの定理を理解し、連続はりのSFD、BMDが描ける					
		15週	前期期	前期期末試験(達成度確認試験3)			・不静定はりの重ね合せ法による解法を理解する ・不静定はりの重複積分法による解法を理解する ・連続はりとクラペイロンの3モーメントの定理を理解し、連続はりのSFD、BMDが描ける					
		16週	試験》	反却・解答解詞	说等(2h)		・試験問題を通じて間違った	箇所を理解で	きる			
		1週	組合t	せ応力(2h, :	コア)		・多軸応力の意味を説明でき	る				
		2週		せ応力 5力と主せん!!	派力(2h, コア	·)	・二軸応力について,主応力きる	」と主せん断応	力を計算で			
		3週	組合t 主师		f応力(2h, コア	·)	・二軸応力について,主応力きる	こと主せん断応	力を計算で			
		4週		組合せ応力 平面応力とモールの応力円(2h, コア)			・モール応力円を描き,主応力,主せん断応力の大き さおよび方向との関係を説明できる					
		5週	達成原	度確認試験4			・任意の面上の主応力と主も	せん断応力を計	算できる			
後期	3rdQ	6週	・引引・曲に	ひずみエネルギー(2h, コア) ・引張や圧縮 ・曲げやねじり ・カスチリアノの定理			・部材が引張や圧縮を受ける を計算できる ・部材が曲げやねじりを受ける 一を計算できる ・カスチリアノの定理を理解 に応用できる	ける場合のひず	゛みエネルギ			
		7週	・引引 ・曲 <i>に</i>	みエネルギー 長や圧縮 げやねじり スチリアノの気	,		・部材が引張や圧縮を受ける を計算できる ・部材が曲げやねじりを受け ーを計算できる ・カスチリアノの定理を理解 に応用できる	ける場合のひず	ずみエネルギ			
		8週	・引引 ・曲 <i>に</i>	みエネルギー 長や圧縮 ずやねじり スチリアノの気			・部材が引張や圧縮を受ける を計算できる ・部材が曲げやねじりを受け ーを計算できる ・カスチリアノの定理を理解 に応用できる	ける場合のひす	ずみエネルギ			
		9週	・引引 ・曲/ ⁻	みエネルギー 長や圧縮 ずやねじり スチリアノの気			・部材が引張や圧縮を受ける を計算できる ・部材が曲げやねじりを受け ーを計算できる ・カスチリアノの定理を理解 に応用できる	ける場合のひず	゛みエネルギ			
	4thQ	10週	達成原	達成度確認試験5		・部材が引張や圧縮を受ける場合のひずみエネルギーを計算できる ・カスチリアノの定理を理解し、それぞれ変位の算出 に応用できる						
		11週	柱の四	柱の座屈(2h)			・柱の座屈を理解し,座屈荷	重や応力を計	算できる			
		12週	柱の四	柱の座屈(2h)		・柱の座屈を理解し,座屈荷重や応力を計算できる						
		13週	柱の四	柱の座屈(2h)		・柱の座屈を理解し,座屈荷重や応力を計算できる						
		14週	柱の四	柱の座屈 (2h) ・ 枯		・柱の座屈を理解し,座屈荷	重や応力を計	算できる				
		15週	学年末				・柱の座屈を理解し,座屈荷	重や応力を計	算できる			
		16週	5週 試験返却・解答解説等 (2h) ・試験問題を通じて間違		・試験問題を通じて間違った	造所を理解で	きる					
モデル	コアカリニ	キュラ	ムの学習	内容と到達	 :目標							
分類		<u>1 ユノ2</u> 分		学習内容	<u>: ロ / N</u> 学習内容の到達E	 目標		到達レベル	授業调			
737%		1/1		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, H. 1H-711Æ	- PJ			前1.前2.前			

<u>分類</u>		分野	学習内容	学習内容の到達目標	到達レベル	授業週
専門的能力	分野別の専 門工学	^I 機械系分野	力学	荷重が作用した時の材料の変形を説明できる。	4	前1,前2,前 3,前4,前 5,前6,前 7,前12,前 13,前14,後 1,後2,後 3,後4,後 5,後6,後 7,後9,後 10,後11,後 10,後13,後 10,後13,後 14
				応力とひずみを説明できる。	4	前1,前2,前 3,前4,前5
				フックの法則を理解し、弾性係数を説明できる。	4	前1,前2,前 3,前4,前5
				許容応力と安全率を説明できる。	4	前1,前2,前 3,前4,前5

			曲げモーメントに。 きる。	よって生じる曲げ応	うかおよびその分布	を計算で	4	前1,前2,前 5
			各種断面の図心、 曲げの問題に適用	理解し、	4	前1,前2,前 5		
			各種のはりについて		4	前3,前4,前 5,前6,前 7,前8,前 9,前10,前 11,前12,前 13,前14,前 15		
	多軸応力の意味を説明できる。						4	後1,後2,後 3,後4,後5
			二軸応力について、 ん断応力をモールの	二軸応力について、任意の斜面上に作用する応力、主応力と主せ ん断応力をモールの応力円を用いて計算できる。				
		部材が引張や圧縮を受ける場合のひずみエネルギーを計算できる。						後6,後7,後 8,後9,後10
			部材が曲げやねじりを受ける場合のひずみエネルギーを計算できる。				4	後6,後7,後 8,後9,後10
			カスティリアノの定理を理解し、不静定はりの問題などに適用できる。				4	後6,後7,後 8,後9,後10
		計測制御	国際単位系の構成を理解し、SI単位およびSI接頭語を説明できる。					前1,前2,前3,前4,前前5,前61,前前12,前前5,前前14,466,666,66666666666666666666666666
評価割合							Ι,	\=I
総合評価割合	達成度確認試験 発表 相互評価 態度 ポートフォリオ 課題 80 0 0 0 20				課題		清十 00	
基礎的能力	0 0		0	0	0	0	0	
専門的能力	80	0	0	0	0	20		00
分野横断的能力	0	0	0	0	0	0	0	