函館	工業高等	専門学校	開講年度	開講年度 令和03年度 (2021年度)			物質工学実験Ⅱ		
科目基礎	情報								
科目番号 0058					科目区分	専門 / 必	必修		
授業形態		実験・実習	1		単位の種別と単	位数 履修単位	ī: 2		
開設学科		物質環境工	学科		対象学年	3			
開設期	開設期前期					4			
教科書/教	材		学実験(産業図書)/プリント						
担当教員		阿部 勝正							
到達目標									
着等温線や 2. 固体、浴 られたデー	ッケン化反応 夜体、気体 <i>0</i> -タから考察	速度などを演	賢習し、原理を理解 料を中心として、:	解し、測定からデー	夕解析までの基本	いな実験プロセス	注測定する溶解熱の測定、あるいは、吸 スを行うことができる。 定装置に関して測定条件を選定し、得		
ルーブリ	リック								
			理想的な到達レベルの目安		標準的な到達し		未到達レベルの目安		
評価項目1			解し、測定から	種の実験原理を理 データ解析までの 行うことができる	について、原理	る実験装置の一つ 及び測定からデー ロセスをほぼ理解	本講義で使用する分析機器の原理 及び測定からデータ解析までのプロセスを理解できていない。		
評価項目2			ロセスを理解し 装置に関して測	る各実験の実験プ 実験に必要な測定 定条件を選定し、 から考察すること	義で使用する測	いはあるが、本語 定装置の測定条件 れたデータから ^考 きる。	本講義で使用する分析機品の測定		
学科の到	」達目標項	目との関係	系						
	113 121 1	函館高専教育	目標 B 函館高専	教育目標 E					
教育方法	等								
概要 な事象の例できるよう			¥明に役立つデータ な基礎固めをする	7を測定するための 3ことを目的とする	基礎技術を学ぶと 。	共に、今後の専門	かを確認したり、さらに将来的に有効 門学習において適切にレポート作成が		
授業の進め	方・方法	本講義は前 実習を行う	前半に実験全体の説明や各実験方法と測定器のガイダンスを行い,その後,8グループに分かれて各テーマの 。						
注意点				ーーー 合は不合格となるの	 で注意すること。				
授業の属	性・履修	上の区分							
	ィブラーニ		□ ICT 利用		□ 遠隔授業対応		□ 実務経験のある教員による授業		
					•		•		
授業計画	Ī								
		週担	受業内容			週ごとの到達目	 標		
	1stQ	1週 ガ	ゴイダンス			各種分析機器に	ついての理論・原理について理解でき		
		2週	D 炭酸ガスの分子	子量測定のガイダン	スと実験課題作	実験にかかわる理論・原理について理解し、課題 - トを作成できる。			
前期		3週	② アセトンの蒸気	気圧のガイダンスと	実験課題作成	実験にかかわる理論・原理について理解し、課題し -トを作成できる			
			ナフタレンの凝固点降下のガイダンスと実験課題 成			実験にかかわる理論・原理について理解し、課題レポートを作成できる			
			無水塩化カルシウムの溶解熱のガイダンスと実 題作成			実験にかかわる理論・原理について理解し、課題レポートを作成できる			
				ガイダンスと実験課		実験にかかわる理論・原理について理解し、課題 ートを作成できる			
		/旭 力	ブイダンスと実験記			ートを作成でき			
			更作成	レ系の粘性率のガイ		実験にかかわる: ートを作成でき	理論・原理について理解し、課題レポ る		
	2ndQ		》 ナフタレンの。 レスと実験課題作品	疑固点降下と分子量 成	との推算のガイダ 	実験にかかわる	理論・原理について理解し、課題レポ る		
		10週 🦻	€験室下見と機器	雀認		各実験テーマに	使用する機器を使用できる。		
		11週 第	第1回 グループ実	験		各テーマ実験を 作成できる。	班に分かれて実施し、実験レポートを		
		12週 第	第2回 グループ実	験		作成できる。	班に分かれて実施し、実験レポートを		
		13週 第	第3回 グループ実	験		各テーマ実験を 作成できる。	班に分かれて実施し、実験レポートを		
		14週 舅	第4回 グループ実	験		各テーマ実験を 作成できる。	班に分かれて実施し、実験レポートを		
		15週 舅	第5回 グループ実	験		各テーマ実験を 作成できる。	班に分かれて実施し、実験レポートを		
		16週 第	角6回 グループ実	験		各テーマ実験を 作成できる。	班に分かれて実施し、実験レポートを		
モデルニ]アカリキ	ユラムの	学習内容と到達	目標					
分類		分野	学習内容	学習内容の到達目			到達レベル 授業週		

基礎的能力	自然科学		化学実験	実験の基礎知識(安全防具の使用法、薬品、火気の取り扱い、整理整頓)を持っている。			3		
				事故への対処の方法(薬品の付着、引火、火傷、切り傷)を理解し、対応ができる。				3	
				測定と測定値の取り扱いができる。				3	
		 化学実験		有効数字の概念・測定器具の精度が説明できる。				3	
		183 200		レポート作成の手順を理解し、レポートを作成できる。				3	
				ガラス器具の取り扱いができる。			3		
				基本的な実験器具に関して、目的に応じて選択し正しく使うことができる。				3	
				代表的な気体発生の実験ができる。				3	
			物理化学実験	温度、圧力、容積、質量等を例にとり、測定誤差(個人差・器差)、実験精度、再現性、信頼性、有効数字の概念を説明できる。				4	前2,前3,前 4,前5,前 6,前7,前 8,前12
				各種密度計(ゲールサック、オストワルド等)を用いて、液体および固体の正確な密度を測定し、測定原理を説明できる。				4	
				粘度計を用いて、各種液体・溶液の粘度を測定し、濃度依存性を 説明できる。				4	前5,前13
専門的能力	分野別の工 学実験・実	化学・生物 系分野【実 験・実習能		熱に関する測定(溶解熱、燃焼熱等)をして、定量的に説明できる。				4	前3,前10
	習能力	験・美智能 力】		分子量の測定(浸透圧、沸点上昇、凝固点降下、粘度測定法等)に より、束一的性質から分子量を求めることができる。				4	前7,前8,前 9
				相平衡(液体の蒸気圧、固体の溶解度、液体の相互溶解度等)を理解して、平衡の概念を説明できる。				4	前8,前 10,前11,前 14
				基本的な金属単極電位(半電池)を組み合わせ、代表的なダニエル電池の起電力を測定できる。また、水の電気分解を測定し、理論分解電圧と水素・酸素過電圧についても説明できる。				4	
				反応速度定数の温度依存性から活性化エネルギーを決定できる。				4	
評価割合									
実験レポート		ポート 発	表	相互評価	態度	ポートフォリオ	課題レポ	- ト 合語	†
総合評価割合	à 50	0		0	0	0	50	100)
基礎的能力	20	0		0	0	0	20	40	
専門的能力	30	0		0	0	0	20	50	
分野横断的能	力 0	0		0	0	0	10	10	