函館工業高等専門学校		開講年度	平成28年度 (2	2016年度)	授業科目	無機化学			
科目基礎情報									
科目番号	0368			科目区分 専門 / 必		修			
授業形態	授業			単位の種別と単位数	数 履修単位	: 2			
開設学科	物質環境工学	科		対象学年	2				
開設期	通年			週時間数	2				
教科書/教材	Professional Engineer Library 化学(実教出版)								
担当教員	小林 淳哉								
到達目標									

- 1. 化学反応にともなう熱の出入り、化学反応速度の計算および化学平衡状態における物質量の計算ができる
 2. 原子、イオンを電子配置や電子軌道から説明できる
 3. 代表的な金属や非金属元素の単体・化合物の原子配置、性質、製法を説明できる
 4. 錯体に関する基本的な性質や構造を説明できる

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安	
評価項目1	熱化学方程式を作成し、熱の出入りを計算でき、実社会で用いられている化学平衡状態について物質量のコントロールについて説明できる。	熱化学方程式が与えられれば、熱 の出入りを計算でき、典型的な反 応で特定の物質の濃度を計算でき る	左記に達していない。	
評価項目2	元素の電子殻・電子軌道からイオ ン化や周期表の構造の説明ができ る	特定の原子の電子殻・電子軌道を説明できる	左記に達していない。	
評価項目3	周期表の金属、非金属を同族元素 に分類して単体・化合物の性質、 製法を説明できる。また結晶性物 質に関する各種の計算ができる。	代表的な元素の単体・化合物の性質、製法を説明できる。また結晶性物質の充填率の計算ができる。	左記に達していない。	
評価項目4	錯体命名法、構造、色、適用例を 複数挙げることができる。	錯体の命名法、構造、色を説明で きる。	左記に達していない	

学科の到達目標項目との関係

函館高専教育目標 B

教育方法等

概要	原子の構造や結合状態など物質の本質を理解する根幹となり、近年の材料開発の発展を無機材料開発分野から支えるための基礎となる科目である。このため、物質を構成する基本単位である様々な元素の性質を理解し、各元素が持つ特異な性質が原子核を取りまく電子の様々な振る舞いによることを周期表と関連付けて説明でき、元素の組み合わせからなる様々な無機元素や化合物の構造、結合状態、性質、反応性について説明することができるようになる。したがって、今後「化学が関係する様々な課題に対して無機化学の関連の基礎知識を適用(応用)してこれを解決していける」ための基本となる科目である。
授業の進め方・方法	高校生が学ぶ内容であるが、それをより発展させて、実社会において使える知識としてイメージできるような授業を心がける。このため、グループワークを行なうとともにICTを活用し、単に知識の暗記ではなく「使える知識」にすることが必要であることを気づいてもらえるような授業にする。演習問題を必ず毎回解くがこの際は B I a c k B o a r d を活用する。自宅学習用の教材も用意するので解いてみること。
注意点	ポートフォリオとは、「自分が備えた無機化学の知識の理解を他の人にも説明する」ためのものである。 たとえば、会社の面接で「私は無機化学の知識をここまで理解し△△に活用できるから、御社にふさわしい人材だと自 己評価します」など自分の評価の資料となる。このためにこの学校で蓄積されていく知識を継続してまとめていくこと が重要である。ポートフォリオでは「自身のなりたい姿へのデザイン(キャリアデザイン)を考えることができる態度 志向性の能力」を評価する。自学自習も主体性と自己管理能力として評価する。

授業計画

	_							
		週	授業内容	週ごとの到達目標				
		1週	ガイダンス 化学反応と熱	反応熱の定義を理解して熱化学方程式をたて、反応熱 の算出ができる。 ・発電におけるエネルギー変換について説明できる。				
		2週	化学反応と熱	反応熱の定義を理解して熱化学方程式をたて、反応熱の算出ができる。 ・発電におけるエネルギー変換について説明できる。				
		3週	化学平衡 (1)化学平衡と平衡定数の計算	反応速度や平衡定数の計算ができる				
	1stQ	4週	(2)平衡移動の法則	平衡移動の法則について理解して、実社会における化 学平衡反応に対して知識を適用できる。				
		5週	(3)溶解平衡	溶解度積から沈殿の生成条件につい説明できる				
		6週	原子の構造と化学結合 (1)原子の構造と電子軌道	電子殻・電子軌道・量子数について説明できる				
前期		7週	(2)希ガス構造とイオンの生成	イオン化エネルギーや電子親和力について説明でき、 希ガス構造と価電子からイオンの価数を説明できる				
		8週	前期中間試験					
		9週	答案の解答	わからなかった問題を解けるようになり、現状の理解 度を確認する				
		10週	(3)周期律と周期表	周期律と、典型元素・遷移元素の特徴を電子配置から 説明できる。 同族元素での性質について説明できる。				
	2ndQ	11週	(4)化学結合	結晶格子の原子やイオンの充填率・密度、原子量等の 計算ができる				
		12週	(5)結晶構造	結晶格子の原子やイオンの充填率・密度、原子量等の 計算ができる				
			無機物質の性質 (1)元素の性質	水素、ハロゲンなど代表的な元素の製法、性質、工業 的な用途や将来性について説明できる。				

		14ì	周	同上			同上				
		15ì		+	 朝末試験		1				
		16ì	周	試験答案返却・解答解説			間違った問題の正答を求めることができる				
		1週		ポー	トフォリオの	作成	現状としての自らの到達度を 己評価できる	の到達度をポートフォリオとして自			
		2週	ļ	(2)元	素の性質(典	型工素)	代表的な金属元素とその化合物について製法、性質、 工業的な用途について説明できる。 水溶液中の金属イオンの分離方法について説明できる				
		3週		同上			同上				
	3rdQ	4週		同上			同上				
		5週	l	(3) 7	元素の性質(追	遷移元素)	代表的な金属元素とその化合物について製法、性質、 工業的な用途について説明できる。				
		6週		同上			同上				
		7週		同上			同上				
後期		9週		後期中間試験 答案返却・解答 錯体の化学			間違った問題の正答を求めることができる 錯体化学の用語や、代表的な錯体の性質、構造、色を 理解している。 錯体が生成する反応についての基本的反応式から代表 的な金属の分離・定性の方法を示すことができる。				
		10)	周	錯体の	の化学		求めることができる 錯体化学の用語や、代表的な錯体の性質、構造、色を 理解している。 錯体が生成する反応についての基本的反応式から代表 的な金属の分離・定性の方法を示すことができる。				
	4thQ	11ì	_	同上			同上				
		12ì	<u>周</u>	同上			同上				
		13ì	周	我が国	国の無機化学	関連企業	企業活動での無機化学関連分 知識がどう活用されているか				
		14ì	周	同上			同上	100000	CC 00		
		15ì		+	 未試験		1 2				
		16ì	6週 試験答案返却 ポートフォリン				間違った問題の正答を求めることができる。現状とし ての自らの到達度をボートフォリオとして自己評価で きる				
モデル	コアカリ	キュき	ラムの)学習	内容と到達	目標					
分類			分野		学習内容	学習内容の到達目標		到達レベル	授業週		
						物質が原子からできていることを説明できる。		3			
						単体と化合物がどのようなものか具体例を挙げて説明できる。		3			
						同素体がどのようなものか具体例を挙げて説明できる。		2			
						純物質と混合物の区別が説明できる。		2			
						混合物の分離法について理解でき、分離操作を行う場合、適切 分離法を選択できる。		2			
						物質を構成する分子・原子が常に運動	動していることが説明できる	2			
						水の状態変化が説明できる。		2			
						物質の三態とその状態変化を説明で	 きる。	2			
						原子の構造(原子核・陽子・中性子・ 説明できる。	電子)や原子番号、質量数を	2			
						同位体について説明できる。		2			
						原子の電子配置について電子殻を用い	い書き表すことができる。	3			
						価電子の働きについて説明できる。		3			
						原子のイオン化について説明できる。		3			
基礎的能	力 自然科	自然科学化学		一般)	设) 化学(一般)	代表的なイオンを化学式で表すことができる。 原子番号から価電子の数を見積もることができ、価電子から原 の性質について考えることができる。		3			
						元素の性質を周期表(周期と族)と周期。		3			
						イオン式とイオンの名称を説明でき	る。	3			
						イオン結合について説明できる。		2			
						イオン結合性物質の性質を説明でき	 る。	2			
						イオン性結晶がどのようなものか説	明できる。	2			
						共有結合について説明できる。		2			
						構造式や電子式により分子を書き表		2			
						自由電子と金属結合がどのようなものか説明できる。		2			
						金属の性質を説明できる。		3			
						アボガドロ定数を理解し、物質量(mとができる。		3			
						分子量・式量がどのような意味をもで		3			
						気体の体積と物質量の関係を説明では					
						化学反応を反応物、生成物、係数を理解して組み立てることがで きる。		4			

分野横断的能力 0 0		1	0	0	5	0		5		
専門的能力 80		1	0	5	0	0	0		95	
基礎的能力	0	0		0	0	0	0		0	
総合評価割合	総合評価割合 80		0	5	0	5	0		100	
	試験		テスト	宿題	態度	ポートフォリオ	その他		合計	
評価割合	評価割合									
			I –	錯体の生成について説明できる。			2			
			1011010	沈殿による物質の分離方法について理解し、化学量論から沈殿量の計算ができる。			2			
			分析化学	溶解度・溶解度積について理解し必要な計算ができる。			> _ ==	2		
				で、ファックで、表的な場合オント語イオンの定性が析りにありに子 反応について理解できる。			2			
				な無機材料の用途・製法・構造等について理解している。 いくつかの代表的な陽イオンや陰イオンの定性分析のための化学						
				セラミックス(ガラス、半導体等)、金属材料、炭素材料、半導体材料、複合材料等から、生活及び産業を支えるいくつかの重要			2			
ı				代表的な元素の単体と化合物の性質を説明できる。			3			
				配位数と構造について説明できる。				2		
				錯体化学で使用される用語(中心原子、配位子、キレート、配位 数など)を説明できる。			2			
				水素結合について説明できる。			2			
				配位結合の形成について説明できる。			2			
専門的能力	分野別の専 門工学	系分野		る。				2		
	分野型の車	/レ芒 /+ #/m		電子配置から混成軌道の形成について説明することができる。 結晶の充填構造・充填率・イオン半径比など基本的な計算ができ			2			
				金属結合の形成について理解できる。			2			
			無燃化学	ことができる。			2			
				イオン結合と共有結合について説明できる。			2			
				<u> వ</u> .				3		
				明できる。 イオン化エネルギー、電子親和力、電気陰性度について説明でき			2			
				元素の周期律を理解し、典型元素や遷移元素の一般的な性質を説			性質を説	3		
				価電子について理解できる。	解し、希ガス構造や	マイオンの生成につ	いて説明	3		
				子の配置を示すこと	<u>とができる。</u>			2		
				電子殻、電子軌道、 パウリの排他原理、			目まる	2		
				主量子数、方位量			0	2		
				電気分解の利用として、例えば電解めっき、銅の精錬、金属のリサイクルへの適用など、実社会における技術の利用例を説明できる。						
				金属の反応性についてイオン化傾向に基づき説明できる。			3			
							3			
				酸化還元反応について説明できる。			3			
				酸・塩基の化学式から酸・塩基の価数をつけることができる。			2			
				酸・塩基の定義(ブレンステッドまで)を説明できる。			2			
				モル濃度の説明ができ、モル濃度の計算ができる。				3		
				質量パーセント濃度の説明ができ、質量パーセント濃度の計算が できる。			の計算が	3		
				電離について説明で	でき、電解質と非電	2解質の区別ができ	る。	2		
		I		16子反心を用いて(と学量論的な計算力	できる。		4		