** // ##	九丁兴古华	· 声明学长	門護左帝	△和04年度(2)022年度)	+222	₩1\I □	++₩\+\₩ π
		専門学校	開講年度	令和04年度 (2	<u>(UZZ年段)</u>	技	業科目	材料力学Ⅱ
科目基礎	EI目牧	T0015			TAILE ()		吉吧 / >:	.A7
科目番号		0015		科目区分		専門 / 必何		
授業形態		授業			単位の種別と単位数 学修単位:			2
開設学科		創造工学科(機械系共通科目)			対象学年			
開設期		前期			週時間数	週時間数 2		
			ぶ材料力学, 森北					
担当教員		野口 勉						
 ひずる 平面応 	の微分方程式 みエネルギー ふ力状態につ	- , カステリフ	こわみを求めるこ アノの定理を説明 F, モール円により	とができる. でき, はりのたわみ)任意の方向の応力	・などを計算できる を計算できる.	5.		
ルーブリック								
			理想的な到達レベルの目安		標準的な到達レベルの目安		安	未到達レベルの目安
評価項目1: はりの微分方程式を誘導し, たわみを計算できるか.			はりの微分方程式を誘導でき,集中荷重,等分布荷重,三角分布荷 重が負荷される代表的なはりのた わみを計算できる.また,不静定 はりの問題へも応用できる.		はりの微分方程式を説明でき,集中荷重,等分布荷重,三角分布荷重が負荷される代表的なはりのたわみを計算できる.		- 角分布荷	はりの微分方程式を説明できない ・また,集中荷重,等分布荷重 ,三角分布荷重が負荷される代表 的なはりのたわみを計算できない ・
評価項目2:仮想荷重を用いてひず みエネルギーを求め、変位、たわ み、ねじり角を計算できるか.			カスティリアノの定理を用いて真 直棒の伸び,ねじり角,たわみの 他,衝撃荷重や曲がりはり,不静 定問題へも応用できる.		軸力, ねじり, 曲げを受ける真直 棒のひずみエネルギーを計算でき , カスティリアノの定理を用いて 伸び, ねじり角, たわみの計算が できる.		計算でき を用いて	軸力, ねじり, 曲げを受ける真直 棒のひずみエネルギーを計算でき ない. また, カスティリアノの定 理を説明できない.
評価項目3:平面応力状態における 応力を計算できるか.			能における広力:	して,平面応力状 を求めることがで 考え方を理解でき	モール円を理解!態における応力なきる.			モール円を理解して,平面応力状態における応力を求めることができない。
学科の到	達目標項	目との関係	•					
I 人間 II 実践 III 国際 CP2 各 CP4 他 教育方法	性 性 系の工学的 者を理解・	尊重し,協働	できるコミュニケ	習および演習・実技 ーション能力と人間	引力			
概要 た,別の3 を行い,角 う問題へ <i>0</i>			学Iで学習した軸力(引張りと圧縮荷重,熱荷重),せん断力,ねじり,曲げ荷重を受ける真直棒の応力と変形に対するたわみは除く),トラスの軸力と変形評価方法を基本として,はりのたわみの評価方法を学習する。ま変形解析方法としてひずみエネルギーを用いるカスティリアノの定理を学習し,加えて,平面応力状態の学習解法の幅を広げると共に次元の拡張を行い,曲がりはり,衝撃荷重,不静定問題など,将来ものづくりで出会り対応能力を高めることを目標とする.					
強応力、・養はされます。		はす力授ーめな%題学再す再えりるを業ド, おと点業評る評た, . 養はさそ評すは成価. 価場非講うPれれ価る, 績に に合か表 している かっぱい おののお しかい かっぱい おののお しかい かんしゅう しゅうしゅう	他のスライドを用いて行う。演習解説部分を除いた授業資料については授業開始前にBlack board上にアップロるので,適宜,それを活用して授業を受けること。また,授業内容についてはTeams上に録画しながら行うたを復習等に利用して理解度を高めること。また,授業内容についてはTeams上に録画しながら行うたを復習等に利用して理解度を高めること。は100点法にて行い,合格点は60点とする。評価の内約は,授業内に行う達成度評価試験50%,課題ノート50。自学自習用の課題として,毎回の授業内容および演習問題の解をノートにまとめて提出することを課す。課この提出された毎回のノートおよび演習問題の取組状況を評価する。今年度は定期試験を実施しない。の成績が60点未満のものに対して再評価のための再試験を実施する場合がある。おいては,再試験点数を90%,課題評価点を10%としたときに評価点が60点を超えた場合に評価点を60点とおいて、上記の条件に該当しなかった場合,再評価前の評価点と再評価試験点数の90%を試験評価点と置き換の双方を比較し,高い方を学年末評価点とする。					
演習問題を計算するため、電卓を持参すること、また、第3学年で学習した引張り圧縮、ねじり、曲げに対する応力 、ひずみ、変形評価が基礎になるので、事前学習として授業前に関係内容の復習を十分しておくこと、また、実力養成 には課題で自学自習に取り組むことが不可欠である。毎授業事に課される課題に取組み、授業内容の理解、計算力の向 上に努めること、なお、課題の取り組みには数学の力が必要であり、因数分解法、微分・積分法についても適宜復習が 必要である。 JABEE学習・教育到達目標: D-iv, E-ii, F-i								
授業の属	属性・履修	上の区分						
	・ィブラーニ		☑ ICT 利用 ☑ 遠隔授業対応		7		□ 実務経験のある教員による授業	
授業計画		<u> </u>	- 1111			l.=		
		週 授	授業内容			週ごとの到達目標		
前期	1stQ		t料力学 I 復習(軸		引張りおよび熱荷重に対する応力, ひずみ, 変形の式を誘導し, 数値解を求めることができる. ねじり荷重に対する応力, ひずみ, 変形の式を誘導し			
			材料カ学Ⅰ復習(丸棒のねじりによる変形とせん断応対動力とトルク)			ねしり何里に対する心力, ひすみ, 変形の式を誘導し , 数値解を求めることができ, 動力とトルクの変換が できる.		
		3週 を	材力学 I 復習(張りの曲げ応力,断配 ☑心,断面二次モーメントと断面係		面一次モーメント 数)			式を求め,基本的なはりの応力とひ 。
			-1 はりのたわみ -2 片持ちけりの			はりのたわみの微分方程式を理解できる. 片持ちはりのたわみを計算できる.		
			-2 片持ちはりのたわみ					
		5週 2	2-3 単純支持はりのたわみ			単純支持はりのたわみを計算できる.		

		6週	2-3 単純支持はりのたわみ 2-4 不静定はり	単純支持はりのたわみを計算できる.							
		7週	2-4 不静定はり		たわみを不静定はりに応用し計算できる.						
		8週	3-1 ひずみエネルギー		ひずみエネルギーを説明でき,基礎的な荷重や形状に 対して計算できる.						
	2ndQ	9週	3-2 エネルギー原理とカスティ リアノの定理		カスティリアノの定理を説明でき,棒の変形計算ができる.						
		10週	3-3 静定トラスの変形と不静定 トラス		カスティリアノの定理をトラスに適用して変形や荷重を計算できる.						
		11週	3-4 はりの変形と不静定はりへ の応用		はりの変形と不静定はりへの応用について理解できる						
		12週	3-5 不静定ねじり部材への応用		カスティリアノの定理をねじりに適用してねじり角やトルクを計算できる.						
		13週	4-1 単純引張りにおける任意の傾斜	料断面上の応力	傾斜断面上の垂直応力,剪断応力を計算できる.						
		14週	-2 平面応力におけるモールの円		平面応力におけるモールの円を描いて,主応力,最大 剪断応力を計算することができる.						
		15週	4-3 薄肉球殻と薄肉円筒殻の応力		薄肉球殻と薄肉円筒殻の応力を計算することができる.						
		16週	前期定期試験								
評価割合											
			達成度評価試験(小テスト)	課題ノート		合計					
総合評価割合			50	50		100					
基礎的能力			10	30		40					
専門的能力			40	20		60					
分野横断的能力			0	0		0					