苫小!		等専門	学校開講年度	 平成30年度 (2	2018年度)	授業科目	物理化学 I		
科目基础									
<u>- 10 </u>		0022	2		科目区分	専門 / 必	·····································		
<u></u>		授業			単位の種別と単				
開設学科 創造工学科(応用化学・生物系共通科				対象学年	3	NATE OF THE			
開設期後期			70 (2011)	週時間数		後期:2			
教科			科書: 福地賢治著 「物理化学」 実教出版 / 教材: 1)P.W.Atkins著 千原秀昭・中村亘男訳「アトキンス 7理化学 第6版」東京化学同人,2)David W.Ball著 田中一義・阿竹徹監訳「ボール 物理化学」化学同人, W.J.Moore著 細矢治夫・湯田坂雅子訳「ムーア 基礎物理化学」東京化学同人,4)D.A.McQuarrie, J.D.Simon著 原英昭・齊藤一弥・江口太郎訳「物理化学 – 分子論的アプローチ」東京化学同人,5)米山宏著「電気化学」大日本図						
担当教員			裕之						
到達目	 標								
第三法則	を理解し、.	理解し、 エントロ	熱力学第一法則に基づい ピーと化学変化の方向を	てエンタルピー、 明らかにできるこ	仕事、内部エネルと。	ギーを求めること	ができること。さらに熱力学第二・		
ルーブ!	リック				1				
			理想的な到達レベルの目安		標準的な到達レベルの目安		未到達レベルの目安		
1) 気体の法則について正 解できる。			く理 気体の法則について正しく理解で きる。		気体の法則について理解できる。		気体の法則について理解できない。		
2) 熱力学第一法則を理解 ネルギー保存則により、エン ピー、仕事、内部エネルギー めることができる。			クル ギー保存則により	ギー保存則により、エンタルピー 、仕事、内部エネルギーを求める		を理解し、エネル り、エンタルピー ネルギーを求める	熱力学第一法則を理解できない。 エネルギー保存則が理解できない。		
3) 熱力学第二・第三法則でき、エントロピーと化学 方向について説明できる。					ことができる。 熱力学第二・第 、エントロピー について計算が	三法則を説明でき と化学変化の方向 できる。	熱力学第二・第三法則を説明できない。エントロピーと化学変化の方向について計算から求めることができない。		
学科の	到達目標耳	項目との	 D関係						
教育方法	法等								
概要		物理する		性質」、「熱力学	第一法則」、「熱	力学第二・第三法	則」についてその基本について教授		
授業の進 注意点	め方・方法 	つ (1 60点 評価:	決定する(各到達日標に「 以上とする)。	に いて再試験は原則	題(20%)、中間 実施しないが、挤	前武馬東(40% <i>)、</i> 元	。 エロター から で がら で が		
授業計画	 面	1/3 03		T IMIO O O M. C.A.S.					
		週	授業内容			週ごとの到達目標	<u> </u>		
後期	3rdQ	1週	気体の法則(1)			週にこの到達日標 気体の法則を理解できる。			
		2週	気体の法則(2)			気体の分子速度論から圧力を定義できる。			
		3週	気体の法則(3)			気体の分子速度と圧力の関係から、理想気体の方程式を説明できる。			
		4週	気体の法則(4)			実在気体の特徴と状態方程式の関係を説明できる。			
		5週	気体の法則(5)			臨界現象と臨界点近傍の特徴について説明できる。			
		6週	気体の法則(6)				混合気体についてモル分率と分圧を計算できる。		
		7週	熱力学第一法則(1)		熱力学の第一法則	効力学の第一法則を定義し、熱・仕事・内部エネルギーについて説明できる。		
		8週	熱力学第一法則(2		熱力学の第一法則を定義し、熱・仕事・内部エネルギーについて説明できる。				
	4thQ	9週	熱力学第一法則(3		熱容量の定義と反応熱について理解できる。				
		10週	熱力学第一法則(4				音量の定義と反応点できる。 準生成エンタルピーを計算できる。		
		11週	熱力学第一法則(5				エンタルピーの温度依存性を説明し、計算できる。		
		12週	熱力学第二・第三法		化学反応におけるエントロピー変化を説明できる。				
		13週	熱力学第二・第三法		他学校心にものの ダエントロピーを説明できる。 純物質の絶対エントロピーを説明できる。				
		14週	熱力学第二・第三法則(3)			標準生成自由エネルギーを計算できる。			
		15週	熱力学第二・第三法		反応における自由エネルギー変化から平衡定数を計算できる。				
		16週 定期試験				CC.90			
評価割る	 合	•	,						
			 中間試験	定期試験	ì	 寅習・課題	合計		
総合評価割合			40	40	1	10	100		
基礎的能力			32						
基礎的能	カ	l	32	32	1	.6	80		