苫小牧工業高等専門学校		開講年度	平成30年度 (2	018年度)	授業科目	数学特別講義 A	
科目基礎情報							
科目番号	116943			科目区分	一般 / 選	択	
授業形態	授業			単位の種別と単位数	学修単位	学修単位: 2	
開設学科	環境都市工学科			対象学年	4		
開設期	前期			週時間数	前期:3	前期:3	
適宜プリントを配布するので特に指定しないが、参照用に1~3年次に用いた教科書を持参することをお勧めする。高遠節夫他著「新基礎数学」「新微分積分I」「新微分積分I」「新線形代数」大日本図書 林義実「大学編入試験問題数学/徹底演習(第2版)」森北出版 三順子著「大学・高専生のための基礎数学」森北出版 松田 修著 「これからスタート 理工学の基礎数学」 電気書院 A.C.Bajpai, L.R.Mustoe and D.Walker: "Engneering Mathematics", 2nd Ed., Wiley, 1974G. B. Arfken, H. J. Weber, and F. E. Harris, "Mathematical Methods for Physicists", Academic Press, 2012							
担当教員	小幡 修平						
到達日標							

到连日倧

- (1)種々の数学問題に対する解決能力の基礎を身につける。 (2)課題を通して自主的・継続的学習の習慣を身につける。

ルーブリック

		理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安		
<u>1</u> .	数と式の計算・方程式・不等	方程式・不等式の概念を理解し、 解を求めることができる。	方程式・不等式の概念を理解し、 基本的な問題の解を求めることが できる。	方程式・不等式の基本的な概念を 理解できず、基本的な問題の解を 求めることができない。		
2. 数	三角関数・指数関数・対数関	三角関数・指数関数・対数関数の 概念を理解し、計算ができる。	三角関数・指数関数・対数関数の 概念を理解し、基本的な計算がで きる。	三角関数・指数関数・対数関数の 概念を理解できず、基本的な計算 ができない。		
3.	関数とグラフ・図形と式	様々な関数のグラフが描ける。	様々な関数の基本的なグラフが描 ける。	様々な関数の基本的なグラフが描 けない。		
4.	場合の数と数列	順列・組み合わせ・数列の概念を 理解し、計算ができる。	順列・組み合わせ・数列の概念を 理解し、基本的な計算ができる。	順列・組み合わせ・数列の概念を 理解できず、基本的な計算ができ ない。		
5.	ベクトル	ベクトルの概念が理解でき計算ができる。	ベクトルの概念が理解でき基本的 な計算ができる。	ベクトルの基本的な概念が理解で きず計算ができない。		
6.	行列と行列式	行列と行列式の概念が理解でき計 算ができる。	行列と行列式の基本的概念が理解 でき計算ができる。	行列と行列式の基本的概念が理解 できず、計算ができない。		
7.	1次変換	1次変換が理解でき図形への利用ができる。	基本的な1次変換が理解でき図形 への利用ができる。	基本的な1次変換が理解できず、 図形への利用ができない。		
8.	関数の極限	関数の極限の概念を理解し、計算 ができる。	関数の極限の概念を理解し、基本 的な計算ができる。	関数の極限の概念を理解できず、 基本的な計算ができない。		
9.	微分法 9-1 常微分とその 月	微分法の定義と概念が理解でき色々な関数が微分できる。 微分法を応用して関数の接線を求めたり、グラフの概形が描ける。 微分方程式の概念が理解でき解くことができる。	微分法の定義と概念が理解でき基本的な関数が微分できる。 微分法を応用して基本的な関数の接線を求めたり、グラフの概形が 描ける。 微分方程式の概念が理解でき基本 的な方程式を解くことができる。	微分方程式の概念が理解できず、 基本的な方程式を解くことができ ない。		
9.	微分法 9-2 偏微分とその 月	偏微分の概念を理解し、様々な多変数関数が微分でき、応用に用いることができる。	偏微分の概念を理解し、基本的な 多変数関数が微分でき、応用に用 いることができる。	偏微分の概念を理解できず、基本 的な多変数関数が微分できず、応 用に用いることができない。		

学科の到達目標項目との関係

教育方法等

概要	1 ~ 3 年次に学んだ数学の主な項目を復習し、問題解決力及び思考力を養う。
授業の進め方・方法	主な項目につき要点を解説した後、問題演習を通して応用力を養う。学生には黒板での解答、課題の提出を求める。中間試験30%,定期試験40%,課題20%、黒板解答10%の割合で評価する。合格点は60点以上である。なお、学期末に再試験を行うことがある。
注意点	・学修単位として毎回1時間程度各項目の基礎的な事項を予習して授業に臨み、3時間以上の復習で理解を深めることが必要。(60時間の自学自習が必要です) ・課題には真剣に取り組み、期限を守って提出すること。

授業計画

		週	授業内容	週ごとの到達目標		
前期		1週	数と式の計算・方程式・不等式 (1)	方程式・不等式の概念を理解し、解を求めることが できる。		
		2週	数と式の計算・方程式・不等式 (2)	方程式・不等式の概念を理解し、解を求めることが できる。		
		3週	三角関数・指数関数・対数関数(1)	三角関数・指数関数・対数関数の概念を理解し、 計算ができる。		
	1stQ	4週	三角関数・指数関数・対数関数(2)	三角関数・指数関数・対数関数の概念を理解し、 計算ができる。		
		5週	関数とグラフ・図形と式	様々な関数のグラフが描ける。		
		6週	場合の数と数列	・順列・組み合わせ・数列の概念を理解し、計算ができる。		
		7週	ベクトル	ベクトルの概念が理解でき計算ができる。		
		8週	中間試験	理解の程度をはかる。		
	l2ndΩ	9週	行列と行列式	行列と行列式の概念が理解でき計算ができる。		
		10週	1次変換	1次変換が理解でき図形への利用ができる。		

	1	11週	関数の極限				関数の極限の概念を理解し、計算ができる。		
		12週	常微分とその応用				微分法の定義と概念が理解でき色々な関数が 微分できる。 微分法を応用して関数の接線を 求めたり、グラフの概形が描ける。 微分方程式の概念が理解でき解くことができる。		
	1	13週	偏微分とその応用				偏微分の概念を理解し、様々な多変数関数が 微分でき、応用に用いることができる。		
1		L4週	積分とその応用			積分法の定義と概念が理解でき不定積分を 求めることができる。 定積分を応用し面積や 体積を計算できる。			
	1	L5週	多重積分とそ	 の応用		重積分法の概念が理解でき計算ができる。			
	1	16週							
評価割合									
中間試験		i	定期試験	課題		黒板解答	合計		
総合評価割合		30		40	20		10	100	
基礎的能力		30		40	20		10	100	
専門的能力		0		0	0		0	0	
分野横断的能力		0		0	0		0	0	