八戸	工業高等	専門学校	開講年度	令和02年度 (2	2020年度)	授業科	目プログ		4041)	
科目基礎	情報									
科目番号		5Z16			科目区分	専門] / 必修			
授業形態		講義			単位の種別と単位	立数 履修	學位: 1			
開設学科		産業システース	テム工学科環境都で	市・建築デザインコ	対象学年	5				
開設期		前期			週時間数	2				
教科書/教材	オ	教員自作	教材							
担当教員		杉田 尚男	7							
到達目標										
1.net系の言 2.用語の理 3.合成桁の	言語を用い解、基礎的設計計算を	てプログラミ 対な理論・計 と例にとるが	ミングできること。 算式が理解できるる、 変形や破壊に関す	こと。基礎的な部材は する力学的性質の基準	の設計をコンピュ 本を理解し、プロ	ータでプログ グラミングが	グラミングがで ができること。	きること。		
ルーブリ	ック		7m+n+h+++7m++	3.1. 5.D. + (F.)	I=3445 1 - 715 1		±			
			理想的な到達レ						ンベルの目安(不可) 	
評価項目1			Windowsフォー 用を理解しアプ 成できる。		用を理解しプログラミングができ │用をヨ		owsフォームデザイナーの使 U解しプログラミングができ			
評価項目2			面力の算定、応	桁に作用する荷重強度の算出、断 桁に作用する荷重面力の算定、応力照査、安全照査 面力の算定をプログラミングできる。						
評価項目3			橋梁の設計条件 計図面,設計数 ラミングできる	から設計計算、設 量計算までプログ 。	算、設 プログ クリープ応力、ひずみによる 、温度応力をプログラミング る。			プ応力、ひずみ 応力をプログラ	がによる応力 ラミングでき	
学科の到		目との関	係							
ティフロマ 教育方法		JF								
<u>教育力広</u> 概要	. र	課題を課造力学・	し、設計に対するfi 鋼構造学、コンク!	計製図として、道路 能力を高めることをE Jート構造学、CAD 用の仕方も修得でき。	目標とする。設計 などの知識が不可	算および製図 計算やCAD(欠であるこ	図を行う。設計: こよる製図を通 とが理解されよ	条件がひとりひ じて、4学年ま う。また、道路	とり異なる でに学んだ構 8橋示方書に	
授業の進め	方・方法	主に主桁の		床版の設計、主桁(横構の順で設計計算 サトで行うので計算が	に対する設計荷重6 算を進める。計算	書の作成後、	CADによる製	図として一般図	る。ずれ止]と主桁図を	
注意点		毎時間の	要業では、前半で記 計計算を行う。課題	受計例によって示方 関に積極的に取り組織	書の使い方や設計 お必要があり、提	計算の方法を 出期限厳守で	を説明し、後半で課題が提出され	で各自自分の設 れなければなら	: 計条件に基 ない。	
授業計画										
		週				週ごとの到				
		 	<u>基本的なプログラ</u>			Windowsフォームデザイナーの使用法				
			基本的なプログラム			Windowsフォームデザイナーの使用法				
			基本的なプログラム			Windowsアプリケーションの作成法				
		4週	基本的なプログラ	 ム演習		Windowsアプリケーションの作成法				
	1-+0	5週	基本的なプログラ	 ム演習		クラスライブラリーの使用法				
	1stQ	6週	合成桁橋における:	主桁断面の設計		主桁の断面	桁の断面決定:死荷重による鋼桁断面の応力度算 プログラミング			
		7週	合成桁橋における	主桁断面の設計		主桁の断面決定:死荷重による鋼桁断面の応力度算 をプログラミング			D応力度算出	
		8週	合成桁橋における	主桁断面の設計		主桁の断面決定:コンクリートクリープによる鋼村 面の応力度算出をプログラミング			こよる鋼桁断	
前期	2ndQ	9週	合成桁橋における:	主桁断面の設計		主桁の断面決定:コンクリートクリープによる鋼料面の応力度算出をプログラミング			こよる鋼桁断	
		10週	合成桁橋における:	主桁断面の設計		主桁の断面決定:乾燥収縮による鋼桁断面の応力 出をプログラミング				
			合成桁橋における:			出をプログ	行の断面決定:乾燥収縮による鋼桁断面の応力度 ピプログラミング			
			合成桁橋における主桁断面の設計			主桁の断面決定:温度差応力度算出をプログラ				
			合成桁橋における			主桁の断面決定:温度差応力度算出をプログラミング				
		14週	荷重の組み合わせによる応力照査についまング			荷重の組み合わせから合成前・合成後・クリープ・ 燥収縮・温度差応力について設計する。				
		13週	荷重の組み合わせによる応力照査についるシグ		いてのプログラ	燥収縮・温	行重の組み合わせから合成前・合成後・クリープ・乾 製収縮・温度差応力について設計する。			
		16週 口頭試問を行う。				合成桁橋の	設計において口	頭試問を行う。		
			V/ 77							
モデルコ	アカリキ	-ユラムの	学習内容と到達	自標					1	
モデルコ	アカリキ 	ショラムの 分野	学習内容と到道学習内容	学習内容の到達目標	•	ス複数のマリ	レゴリズムが左ね	到達レベル 在 -	授業週	
分類		分野	学習内容	学習内容の到達目標 同一の問題に対し、 しうることを知って	それを解決でき ^え ている。			在 3	授業週	
		分野	学習内容	学習内容の到達目標 同一の問題に対し、	それを解決できたいる。 こいる。 よ問題を解くための	の適切なアル	レゴリズムを構築	在 3 樂 3	授業週	

)專 建設系分野		断面1次モーメントを理解し、図心を計算できる。				3	
			野 構造 <u> </u>	断面2次モーメント、断面係数や断面2次半径などの断面諸量を 理解し、それらを計算できる。				3	
				各種静定ばりの断面に作用する内力としての断面力(せん断力、曲げモーメント)、断面力図(せん断力図、曲げモーメント図)について、説明できる。				3	
				トラスの種類、安定性、トラスの部材力の意味を説明できる。				3	
	分野別の専			節点法や断面法を用いて、トラスの部材力を計算できる。				3	
	門工学			ラーメンの支点反力、断面力(軸力、せん断力、曲げモーメント)を計算し、その断面力図(軸力図、せん断力図、曲げモーメント図)を描くことができる。				3	
				はりのたわみの微分方程式に関して、その幾何学的境界条件と力学的境界条件を理解し、微分方程式を解いて、たわみやたわみ角を計算できる。				3	
				鋼構造物の種類、特徴について、説明できる。				3	
				各種示方書に基づく設計法(許容応力度、終局状態等)の概要を説明でき、安全率、許容応力度などについて説明できる。					
評価割合									
	試験	3	 発表	相互評価	態度	ポートフォリオ	その他	台	· i t
総合評価割合	0	3	30	0	0	70	0	100	
基礎的能力	0	1	10	0	0	20	0	30)
専門的能力	0	1	10	0	0	20	0	30)
分野横断的能;	カ 0	1	10	0	0	30	0	40)