一関	工業高等	專門学校	開講年度	令和02年度(2	2020年度)	授第	科目電	気回路	I	
科目基礎			,							
科目番号	ACTION IX	0001			科目区分	Ī	 専門 / 必修			
<u></u>					単位の種別と単位		313,212 夏修単付:1			
開設学科										
開設				2 710	週時間数	2				
			ライブラリー 電	気回路 改訂版						
担当教員		千葉 悦郊	· 尔							
到達目標	=									
	の基礎であ	る電気回路計	算の基礎と応用力	を養う。直流回路計	算を修得し、さら	に正弦波	交流回路の	基礎事項	を理解する。	
ルーブリ	<u> </u>									
理想的な到達レ							未到達レベルの目安			
関、分圧・分 流回路の電圧 直流回路について また回路方程				キルヒホッフの法 記の法則を使って直 記流を計算できる。 だによる解法と計算 別路にも十分対応で	流回路の電圧電流を計算できる。 則、分別			オームの 則、分圧 算ができ [;]	D法則、キルヒホッフの法 E・分流の法則を使った計 きない。	
交流電圧や電 交流回路について 位相、瞬時値				最大值、平均值、 位相、瞬時值、最大值、平均值、 位相		位相、瞬	電圧や電流の周波数、周期、 瞬時値、最大値、平均値、 直の計算ができない。			
抵抗、インダクタンス、キャパシ LCR各素子の-				′ンピーダンスや電 目差を理解し説明で	LCR名素マのノンピーグンフカ面 LCR名素				養子のインピーダンスや電 間の位相差を理解できない	
学科の到	到達目標」	項目との関								
教育方法	 去等									
既要	_ ` _	電気工学にも触れ		回路計算の基礎と応	用力を養う。直流	回路計算	を 修得し、 :	さらに正弦	炫波交流回路	の基礎事項
 受業の進/	 め方・方法			 中心とするが、演習	プリントを配布し	計算カキ	 養う。			
授業計画	画		160点の単位修得と 授業内容	の平均点数(100%) する。			到達目標		Jubyra/ C.X	
		1週	ガイダンス電気			オームの法則、電圧降下を説明できる。				
		2週	直流回路(抵抗の			抵抗の直列、並列回路の合成抵抗、電圧、電できる。			電流を計算	
		3週	直流回路(キルヒ	ホッフの法則)			レー・レー・レー・レー・レー・レー・レー・レー・レー・レー・レー・レー・レー・レ			
	3rdQ	4週	直流回路(分圧、			0	圧、分流の式を使って電圧電流の回路計算ができる			
		5週	直流回路(回路方			回路方程式の作成し、方程式を解ける。				
		6週	直流回路(ループ			ループ電流法を使って回路計算ができる。 ノード電圧法を使って回路計算ができる。				
		7週	直流回路(ノード	電圧法)						
		8週	中間試験							
		9週	直流回路(重ねの			重ねの理を使って回路計算ができる。				
		10週	直流回路(テブナ	最大値きる。		 	テブナンの定理を使って回路計算ができる。			
	1	11週	正弦波交流回路			きる。	値、実効値、周波数、位相、周期について説明。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
							クタンス、キャハンタンスの特徴を説明でき 			
	4thQ	12週	正弦波交流回路(=1	0				
	4thQ	13週	正弦波交流回路(電圧、電流の位相差	<u> </u>	。RLC各素	子の両端電	圧と電流	の位相差が説	明できる。
	4thQ	13週	正弦波交流回路(インピーダンスと	電圧、電流の位相差	<u>*</u>)	。RLC各素	子の両端電	圧と電流		明できる。
	4thQ	13週	正弦波交流回路(電圧、電流の位相差	<u> </u>	。RLC各素	子の両端電・ダンスとア	圧と電流	の位相差が説	明できる。
モデルコ		13週 14週 15週 16週	正弦波交流回路(インピーダンスと期末試験	電圧、電流の位相差	<u>*</u>)	。 RLC各素 インピー	子の両端電・ダンスとア	圧と電流	の位相差が説	明できる。
		13週 14週 15週 16週	正弦波交流回路(インピーダンスと 期末試験 まとめ	電圧、電流の位相差		。 RLC各素 インピー	子の両端電・ダンスとア	圧と電流	の位相差が説	明できる。
		13週 14週 15週 16週 キュラムの	正弦波交流回路(インピーダンスと 期末試験 まとめ 学習内容と到途	電圧、電流の位相差 アドミッタンス 幸目標	標	。 RLC各素 インピー 。 試験解訪	子の両端電グンスとア	圧と電流	の位相差が説ンスの関係を	明できる。
分類	コアカリョ	13週 14週 15週 16週 キュラムの 分野	正弦波交流回路(インピーダンスと 期末試験 まとめ 学習内容と到途	電圧、電流の位相差 アドミッタンス 幸目標 学習内容の到達目 オームの法則から	標	。 RLC各素 インピー 。 試験解訪	子の両端電・ダンスとア	圧と電流/ドミッタ	の位相差が説ンスの関係を	明できる。
分類	コアカリョ	13週 14週 15週 16週 キュラムの 分野	正弦波交流回路(インピーダンスと期末試験まとめ)学習内容と到道学習内容	電圧、電流の位相差でドミッタンス 幸目標 学習内容の到達目 オームの法則から 抵抗を直列接続、 ことができる。	標 、電圧、電流、抵:	。 RLC各素 インピー。 試験解訪 抗に関す	子の両端電・ダンスとア	圧と電流/ドミッタ	の位相差が説 ンスの関係を 到達レベル 3	明できる。
モデル <u>コ</u> 分類 基礎的能力	コアカリニカ 自然科:	13週 14週 15週 16週 キュラムの 分野	正弦波交流回路 (インピーダンスと 期末試験 まとめ)学習内容と到近 学習内容	電圧、電流の位相差でドミッタンス 幸目標 学習内容の到達目 オームの法則から 抵抗を直列接続、 ことができる。	標 、電圧、電流、抵 及び並列接続した を求めることがで:	。 RLC各素 インピー。 試験解訪 抗に関す	子の両端電・ダンスとア	圧と電流/ドミッタ	の位相差が説 ンスの関係を 到達レベル 3 3	明できる。 理解できる
分類	コアカリ= カ 自然科:	13週 14週 15週 16週 キュラムの 分野	正弦波交流回路(インピーダンスと期末試験まとめ)学習内容と到近学習内容	電圧、電流の位相差 アドミッタンス 幸 目標 学習内容の到達目 オームの法則から 抵抗を直列接続、ことができる。 ジュール熱や電力	標 、電圧、電流、抵 及び並列接続した。 を求めることがで を説明できる。	。 RLC各素 インピー。 試験解記 抗に関す ときの合。	子の両端電子グンスとア	圧と電流 アドミッタ きる。 を求める	の位相差が説 ンスの関係を 到達レベル 3 3	明できる。 理解できる

				合成抵抗や分圧・分流の考え方を用いて、直流回路の計算ができる。					
	ブリッジ回路を計算し、平衡条件を求められる。							4	
				電力量と電力を記		、これらを計算できる。			
				正弦波交流の特徴を説明し、周波数や位相などを計算できる。					
				平均値と実効値を	を説明し、これら				
		正弦波交流のフェーザ表示を説明できる。						4	
		R、L、C素子における正弦波電圧と電流の関係を説明できる。						4	
		瞬時値を用いて、交流回路の計算ができる。						4	
		フェーザ表示を用いて、交流回路の計算ができる。							後6
		インピーダンスとアドミタンスを説明し、これらを計算できる。							
		キルヒホッフの法則を用いて、交流回路の計算ができる。						4	
		合成インピーダンスや分圧・分流の考え方を用いて、交流回路の 計算ができる。						3	
	直列共振回路と並列共振回路の計算ができる。					計算ができる。		3	
				交流電力と力率を	交流電力と力率を説明し、これらを計算できる。				
				網目電流法を用いて回路の計算ができる。				3	
		計測 電圧降下法による抵抗測定の原理を説明できる。						4	
評価割合									
	試験	発	 続表	相互評価	態度	ポートフォリオ	その他	合計	†
総合評価割合	100	0		0	0	0	0	100)
基礎的能力	100		_	0	0	0	0	100)
専門的能力	0	0	_	0	0	0	0	0	
分野横断的能力	0	0		0	0	0	0	0	