		 事門学校	開講年度 令和(02年度 (20)20年度)	授	 業科目	電気電子材料			
科目基础								, =			
科目番号		0050		;	科目区分		専門 / 選択				
授業形態		講義		į	単位の種別と単位数 履修単						
開設学科		未来創	告工学科(電気・電子系)		対象学年		4				
開設期		後期			週時間数	2					
教科書/教				科学入門シリーズ・電気伝導入門(前			善房),(2)電子・光材料(澤岡昭,森北出版)				
担当教員		谷林 慧									
到達目標 【教育目 【学習・	_	ლ】C-2									
ルーブ		, , C L									
			理想的な到達レベルの目)目安 標準的な到達レベノ		ベルの目]安	未到達レベルの目安			
電気電子 知識の習	材料を扱う [:] 得	うえで必要	習得した知識 (標準レ/ 景にある物理を理解する きた	スプレボブ 川	電気電子材料を扱ううえで必 知識を習得できた			電気電子材料を扱ううえで必要な 知識を習得できなかった			
オームの	法則の微視的	的理解	量子論等の微視的な物理	量子論等の微視的な物理学を導入 する必然性について理解できた		微視的な	は理解がで	オームの法則の微視的な理解ができなかった			
学科の	到達目標項	頁目との	月 係								
教育方法	法等										
概要	かち・ち 注	岡昭, 着 授業でし を扱う。 後者(柒北出版)。 は,主に,前者(1)の「第 最後に,不純物半導体とPM 2)に関しては,次の章を自	1章物質の電気 N接合について 学自習課題に	気伝導とオーム <i>0</i> C簡単に触れる。 指定する:。第	D法則」 1章,第	, および	,裳華房),(2)電子・光材料(澤 「第2章オームの法則の微視的理解」 章,題7章。			
<u>授業の進</u> 注意点	め方・方法	1	D座学授業。アクティブラー 授業と自学自習課題の両方				 予定である	3			
左总点 授業計i	面	直込海火(み,	12来に日子日白味歴の両刀	カウ田居する	。両句の割口は	1.10)	J/E C める	J.			
汉未可1	<u> </u>	週	授業内容			调プレ	の到達目標	5			
後期		1週	1. 物質の電気伝導とオー 1.1 オームの法則	- ムの法則		オームの法則とは何か?について説明できる。 {抵抗,抵抗率,コンダクタンス,電気伝導度}の 義や互いの関係について説明できる。					
		2週	1.2 様々な物質の電気伝	.2 様々な物質の電気伝導				導体と絶縁体(含む半導体)の違いを,抵抗率の大きさや温度依存性の観点から説明できる。			
		3週	1.3 分極と誘電性	1.3 分極と誘電性				絶縁体に電圧をかけたときに生じる誘電分極について 説明できる。			
		4週	2. オームの法則の微視的 2.1 古典論による自由電		オームの法則が古典論に基づいて導けること説明できる。 電子の平均自由行程を古典論に基づいて求めると、値が原子間距離程度となり、最新の実験結果と合わないことを説明できる。						
	3rdQ	5週	2.2 量子論による自由電	2 量子論による自由電子モデル				自由電子ガスを量子論に基づいて記述する方法について説明できる。 電子の平均自由行程を量子論に基づいて求めると,値が原子間距離の約30倍になり,最新の実験結果と合うことを説明できる。			
		6週	2.3 結晶とバンド理論 -		自由電子論とバンド理論の示すモデルの違いを説明できる。 物質が導体と絶縁体(半導体)に分類される理由を , バンド理論に基づいて説明できる。						
		7週	中間試験		なし						
		8週	中間試験問題の解説				中間試験問題の中で解けなかったものを,解くことができるようになる。				
		9週	2.4 電気抵抗の原因		電気抵抗が発生するためには、周期ポテンシャルのれが必要であることを説明できる。 ポテンシャルの周期性が乱れる要因を、いくつかすることができる。						
		10週	3. オームの法則の微視的 3.1.1 半古典近似と有効	3. オームの法則の微視的理解(2) 3.1.1 半古典近似と有効質量			半古典近似を導入すると、電子波の波束の中心は、擬似的な運動方程式に従うように見えることを説明できる。半古典近似を導入するうえで、結晶運動量と有効質量の概念が不可欠であることを説明できる。				
	4thQ	11週	3.1.2 半古典近似による	.1.2 半古典近似による電気伝導			物質に対して一定電圧をかけたときに直流電流が生じるための条件が2つ存在することを説明できる:(1)バンドの不完全占有,(2)ブロッホ振動の抑制。 ブロッホ振動を抑制するためには,周期ポテンシャルの4543				
		12週	3.2.1 非平衡分布が従う方程式 – ボルツマン方程式 -			の乱れが必要であることを説明できる。 電子ガスが外部電場の影響を受けると、電子ガスの分 布関数が、フェルミ分布からずれることを説明できる 。 外部電場の影響を取り入れた分布関数は、ボルツマン					
		12週	12週 3.4.1 チャナ (製力 1 ルカ・1 ル フ フ 7 柱式			。 外部電場の影響を取り入れた分布関数は,ボルツ 方程式から求められることを説明できる。					

	13週 3.2.2 金属の電気 14週 5. 乱れと電気伝導 5.1 半導体の不純 15週 期末試験問題の解語				3.2.2 金属の電気伝導度の表式			外部電場の影響を取り入れた(ボルツマン方程式から得られた)分布関数を用いて、各電子からの電流への寄与の総和を求めると、電気伝導度テンソルが求められることを説明できる。フェルミエネルギーが等方的な場合、2.1で求めた電気伝導度に一致することを説明できる。			
								半導体に不純物を導入することによって, キャリアを 制御できることを説明できる。			
					式験問題の解詞)解説		期末試験問題の中で解けなかったものを,解くことが できるようになる。			
		16退	围	なし		なし					
モデルコアカリキュラムの学習内容と到達目標											
分類	分類 分野				学習内容	学習内容の到達目標			到達レベル	授業週	
						電子の電荷量や質量などの基本性質を説明できる。			4		
						エレクトロンボルトの定義を説明し、単位換算等の計算ができる。			4		
	// mz m₁ - →		- -	= -		原子の構造を説明できる。			4		
専門的能力	分野別の 門工学		電気・ 系分野		電子工学	パウリの排他律を理解し、原子の電子配置を説明できる。			4		
	, , , ,		<i>></i> (<i>></i>)±3			結晶、エネルギーバンドの形成、フェルミ・ディラック分布を理解し、金属と絶縁体のエネルギーバンド図を説明できる。			4		
						金属の電気的性質を説明し、移動度や導電率の計算ができる。			4		
						真性半導体と不純物半導体を説明できる。			4		
評価割合											
中間試験							期末試験	合計			
総合評価割合 50						50			100		
授業内容 25					25		25	25 50			
自学自習課題				25			25	50			