一関工業高等専門学校		開講年度	令和02年度 (2	020年度)	授業科目	有機化学Ⅲ			
科目基礎情報									
科目番号	0046			科目区分	目区分 専門 / 選択				
授業形態	講義			単位の種別と単位数	数 履修単位	履修単位: 1			
開設学科	未来創造工学科(化学・バイオ系)			対象学年	4	4			
開設期	前期			週時間数	2	2			
教科書/教材	教科書:荒井貞夫 工学のための有機化学[新訂版] サイエンス社/参考書 加納航治 基本有機化学 三共出版								
担当教員	岡本 健								
까누다枥									

|到達目標|

- 1. 有機化学IIで習得した炭化水素化合物の知識を授業、課題で活用できる 2. 立体化学に気をつけながら、ハロゲンや酸素、窒素を含む有機化合物の反応を説明することができる 3. 電子の流れに基づいて、なぜ反応が起こるのか反応機構を書くことができる

【教育目標】D, 【学習・教育到達目標】D-1

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安						
1. 有機化学IIでの既習内容の活用	構造と反応の関係を説明する際に 、炭素ーヘテロ元素結合に生じる 極性、共役と非局在化、共鳴、そ して酸性度など物理化学的な要因 を使うことができる	有機化学IIで習得した炭化水素化合物の知識を授業、課題で活用できる	有機化学IIで習得した炭化水素化合物の知識を授業、課題で活用できない						
2. 炭素 - ヘテロ元素結合の開裂と新たな結合の形成	ハロゲン化アルキル、カルボニル 化合物、アミン類の構造的特徴を 捉え、反応を説明することができ る	立体化学に気をつけながら、八口 ゲンや酸素、窒素を含む有機化合 物の反応を説明することができる	立体化学の考え方がわからず、ハロゲンや酸素、窒素を含む有機化合物の反応を説明することができない						
3. 反応機構	何も見ないで、適切な表現で反応 機構を書き、説明できる	電子の流れに基づいて、なぜ反応 が起こるのか反応機構を書くこと ができる	電子の流れに基づいた考え方が定 着せず、なぜ反応が起こるのか反 応機構を書くことができない						

学科の到達目標項目との関係

教育方法等

17 D / J / L / J	
概要	ハロゲンや酸素、窒素などを含むさまざまな有機化合物の性質や反応が、どのような法則のもとに規則正しく整理され 理解されているかを学び、なぜこのような反応が起こるのかについて暗記に頼らない考え方を身につける。
授業の進め方・方法	授業は、教科書中心に行うが、演習も随時行う。
注意点	【事前学習】 授業内容に対する教科書の内容を事前に読んでおくこと。また、ノートの前回の授業部分を復習しておくこと。 【評価方法】 誤題(20%)で評価する。詳細は第1回目の授業で告知する。定期試験では、上記の反応および有機化合物の合成法などについての理解度を評価する。 総合成績60点以上を単位修得とする。

授業計画

		週	授業内容	週ごとの到達目標
		1週	立体化学	立体配置の表示法に従い構造⇔命名の変換ができる。
		2週	ハロゲン化アルキル1	命名法に従ってRXの構造⇔命名の変換ができる。
		3週	ハロゲン化アルキル 2	SN反応, E反応の特徴を分類できる。
		4週	ハロゲン化アルキル3	Grignard試薬の特徴を挙げ反応式を書ける。
	1stQ	5週	アルコールとフェノール 1	命名法に従いROH, PhOHの構造⇔命名の変換ができる。
		6週	アルコールとフェノール 2	ROH, PhOHの合成法と反応性について反応式が書ける。
		7週	エーテル	RORの命名, 合成法および反応性を説明できる。
		8週	中間試験	※ Web試験
前期		9週	アルデヒドとケトン1	命名法に従いRCHO,R1R2C=Oの構造⇔命名の変換が できる。
133743		10週	アルデヒドとケトン2	RCHO,R1R2C=Oの合成法とカルボニル化合物の求核付加反応について反応式が書ける。
		11週	アルデヒドとケトン3	エノラートとその反応性について反応式が書ける。
	2 m d O	12週	カルボン酸とその誘導体 1	命名法に従いRCOOH,その誘導体の構造⇔命名の変換ができる。
	2ndQ	13週	カルボン酸とその誘導体 2	RCOOH,その誘導体の合成法と反応性について反応式が書ける。
		14週	カルボン酸とその誘導体3 窒素を含む化合物、複素環化合物	カルボン酸誘導体の反応性について反応式が書ける。 命名法に従いアミン類の構造⇔命名の変換ができる。 アミン類の合成法と反応性について反応式が書ける。
		15週	期末試験	※ Web試験
		16週	まとめ	学習内容を振り返る

モデルコアカリキュラムの学習内容と到達目標

ar mar no real and a series and						
分類		分野	学習内容	学習内容の到達目標	到達レベル	授業週
専門的能力 分野別の専 門工学			代表的な官能基を有する化合物を含み、IUPACの命名法に基づき 、構造から名前、名前から構造の変換ができる。	4		
	分野別の専	化学・生物 系分野	 有機化学	σ結合とπ結合について説明できる。	4	
	未分封 		混成軌道を用い物質の形を説明できる。	4		
				誘起効果と共鳴効果を理解し、結合の分極を予測できる。	4	

				- σ結合とπ結合の違(ハを分子軌道を使い	ハ説明できる。		4	
				ルイス構造を書くる ことができる。	ことができ、それを	利用して反応に結	びつける	4	
				共鳴構造について訓				4	
				分子の三次元的な構 る。	構造がイメージでき	・、異性体について	説明でき	4	
				構造異性体、シス- る。	-トランス異性体、	鏡像異性体などを	説明でき	4	
				化合物の立体化学に関して、その表記法により正しく表示できる。					
				代表的な官能基に関して、その構造および性質を説明できる。 それらの官能基を含む化合物の合成法およびその反応を説明でき る。				4	
								4	
			[代表的な反応に関し	して、その反応機構	まで説明できる。		4	
評価割合									
	試験		確認テスト	課題	態度	ポートフォリオ	その他	í	合計
総合評価割合	総合評価割合 60		20	20	0	0	0		100
基礎的能力	30		20		0	0	0		70
専門的能力	30 0		0	0	0	0	0	3	30
分野横断的能力	野横断的能力 0 0		0	0	0	0	0)