	台高等専	 門学校	開講年度		2020年度)	授業科目	ニュー・ニュー・ニュー・エフボット運	 動機構学 Ⅱ		
		<u> </u>			2020年度)			: <u>=</u> ////X/ [[]] 		
科目番号	CID+K	0017			科目区分	専門 / 選択	7			
授業形態		授業			単位の種別と単位数					
開設学科			· クスコース		対象学年	3				
開設期		後期	<u> </u>		週時間数	2				
教科書/教	 オオ	12,743			ZEPTIEIXX					
担当教員	1,2	伊藤 昌彦								
<u></u>		17 134 1172	2/±1/11/14/ 2							
・マーピー	1 レータの運	■ 動を考える 動方程式を	る上で必要な知識に と導出し、解くこと							
ルーブリ										
<u>,, , , , , , , , , , , , , , , , , , ,</u>			理想的な到達し		標準的な到達レベル	 の目安	未到達レベルの目安			
マニピュレ	ノータの基礎	* E	1	ハて以下の全てが説	参考書等を用いて以下の2つが説明できる。 1.自由度 2.冗長と非冗長 3.順運動学と逆運動学		参考書等を用いても説明できるものが1つ以下。 1.自由度 2.冗長と非冗長 3.順運動学と逆運動学			
ヤコビ行列	ij		参考書等を用い使用した関係を	ハて、ヤコビ行列を 式を記述できる。	参考書等を用いて、ヤコビ行列に ついて説明できる。		参考書等をについて説	用いても、ヤコビ行列 明できない。		
運動方程式	代の解法		で運動方程式を 。 1.ニュートン	で運動方程式を解くことができる の方法で運			いて以下のいずれか 参考書等を月 方程式を解くことが で運動方程式 い。 ・・オイラー法 1.ニュートン ュ法 2.ラグランシ			
学習・教育 学習・教育 学習・教育	育到達度目標 育到達度目標	票 1 口ボラ	ティクスの体系的だ 電気・電子・情報	は知識と技術を身には いま盤技術を身に のた論理的かつ実践	付ける。 付ける。 的思考力を身に付ける	0				
教育方法	大寺	A11111 //								
既要		創造的で れらの知 タイピン	『美践的な技術者を]識・技術は、実際 ⁄グ・検証)プロセ	養成することを目標 のビジネスシーンに スで活用できるもの	に、マニピュレータの 応えるために、デザイ として定着されること	連動に関する シ思考(共感 を目指す。	き一般のな知識のようでは、	と技術を習得する。こ アイデア創出・プロト		
注意点	1	事後学習 ・本科目	(復習) : 毎回の では、上記ルーフ)授業後に授業内容を 「リックに準拠したCE	次回の授業での到達自振り返り、週報として 振り返り、週報として BTにより成績評価を行 実験I」内のアクティ	まとめる。 う。CBTは原則	則として、何原 で活用するこ。	度でも受験可能とする。 とが好ましい。		
	<u> </u>	週	授業内容		调:	 ごとの到達目標				
		1週	ガイダンス		授美	授業概要・授業の進め方・成績評価の方法について説明できる。				
		2週	アクティビティラ	ーマの決定		社会的に新規性がある、価値あるテーマを設定できる。				
		3週	関節の簡易標記		関係	。 関節の簡易標記を説明できる。				
	3rdQ	4週	自由度			自由度を説明できる。				
	SiuQ	5週	冗長と非冗長			冗長と非冗長の場合の違いを説明できる。				
		6週	順運動学		川直道	順運動学を説明できる。				
後期		7週	成果発表のための)準備		これまでの成果をまとめ、発表の準備ができる。				
		8週	成果発表		成身	成果の発表・意見交換を行い、今後の予定に取り入れられる。				
		9週	逆運動学			逆運動学を説明できる。				
		10週	ヤコビ行列			ヤコビ行列を使用した関係式を記述できる。				
		11週	マニピュレータの		マニピュレータの運動方程式を立てることができる。					
		12週		と と と と と と と と と と	——拍	一般化座標・一般化速度・一般化力について説明でき る。				
	4thQ	13週	ニュートン・オイ	(ラー法による運動方		ニュートン・オイラー法により運動方程式を解くこと ができる。				
		14週	ラグランジュ法に	よる運動方程式の計	- 算	ラグランジュ法による運動方程式を解くことができる 。				
		15週	成果発表のための成果発表		これまでの成果をまとめ、発表の準備ができる。 成果の発表・意見交換を行うことができる。					
エデルニ]アカリキ		/// 学習内容と到			ヘーノノレユス 志元.	ヘスピロノし			
<u> </u>	<u>,, ,, ,, , , , , , , , , , , , , , , ,</u>	-ユ <i>ン</i> ムの 分野	学習内容	学習内容の到達目	 橝		李	授業週		
沙葱 評価割合		[/J] EJ	ים ניום דן		MV		[#	1人-レーソレ 1人木/型		
ナー川台リロ		<u></u>	※ 主	扣下亚加	能度	:_ k ¬ + + +	Z D HH	合計		
試験 総合評価割合 100			発表	相互評価 0	態度	ートフォリオ	その他 0			
総合評価割合 100 基礎的能力 0		J	0	<u> </u>	1		0	100		
基礎的能力 0			0	0	0 0		+ -	0		
専門的能力	J 100	J	0	0	0 0		0	100		

分野横断的能力	ln	ln	Λ	ln	ln	ln	l n
ノノエデリ央ロハレン月ピノノ	10	10	U	10	10	10	U