鶴田]工業高等	 専門学校	開講年度 令和03年度 (2	 (021年度)	授業科目				
科目基礎		<u> </u>	1/1 CODITION 1/2 (2	1021 102)					
村口至城间報				科目区分	車門	/ 選択必修			
授業形態		講義		単位の種別と単位		単位: 2			
開設学科			(化学・生物コース)	対象学年	5	, IE			
開設期		後期		週時間数	2				
教科書/教	 材	マクマリー	- 有機化学概説/反応論による有機(化学	Į.				
担当教員	.,-	瀬川 透		- ·					
到達目標	=								
1. 共有約 2. 反応核	- 吉合の性質を 機構の各段階	皆でどのように	製基効果がどのようにして化学反応に 電子が移動するのか、その理由を考 5、その反応機構を推定できるように	え、正しく記述で	るのかを説明 きるようにな	できること。 ること。			
ルーブリ	ノック								
			理想的な到達レベルの目安	標準的な到達レ	ベルの目安	未到達レベルの目安			
評価項目1			共有結合の構造に基づいて、置換 基効果が化学反応に及ぼす影響を 例を挙げて説明できること	共有結合の性質を 効果がどのようし 影響を及ぼしてい きること	こして化学反応	たに 10-福豆と川・福豆の建いが説明でき			
評価項目2	2		反応機構の各段階でどのように電子が移動するのか正しく記述し、 その理由を説明できる	反応機構の各段 子が移動するのか きる	階でどのよう(か、正しく記述	こ電 反応機構の各段階でどのように電子が移動するのか正しく記述できない			
評価項目3	3		実際に観測される実験結果から、 その反応機構を推定し、その理由 を説明できる	実際に観測されるその反応機構を持		ら、 実際に観測される実験結果の反応 機構が推定できない			
学科の至]達目標項	目との関係	<u></u> _						
		:情報技術を身	•						
教育方法	 去等								
この講義で			では、いくつか有機反応の機構について、関係する電子の動きを中心に解説し、その法則性や考え方を解説すの前半は、始めに化学結合について復習した後に、誘起効果と共鳴効果の2つの置換基効果とその関連事項につ 後半は、いくつかの反応例を題材として、どのような過程を経て生成物に到達しているかについて、電子のでなく、立体的な効果も含めながら解説する。						
授業の進め	か方・方法	化学結合に		学反応における電	子の移動に注	目して、有機化合物の様々な反応につい が明らかにされてきたのかを説明する。			
注意点			を表す「矢印」の書き方を規則に沿 終成績が不合格となった学生のうち、			と。 る学生に対しては再試験を実施しない。			
事前・引	移学習、	オフィスフ	プワー						
オフィスス	アワー:講義	長日前日と講義	ペート(A4・1枚程度)を次講義まで 毎日と講義日の翌日の16:00〜17:00	でにメールで提出す	する。 				
授業の原	属性・履修	<u> とい区分</u>	I						
	-ィブラーニ	ング	□ ICT 利用	□ 遠隔授業対応	<u>~</u>	□ 実務経験のある教員による授業			
選択必科									
授業計画	<u> </u>								
		週	受業内容		週ごとの到達	目標			
	3rdQ	1週 化	2学結合「原子から分子へ」						
			ご学結合 I 「イオン結合と共有結合」		イオン結合と共有結合を説明できる				
		3週 化	ご学結合 II 「σ-結合とπ-結合」		σ-結合とn-結合を説明できる				
		4週 酉	俊と塩基		酸や塩基の定義を理解し、それらの強さを定性的に判別できる。				
		5週 🏻 🖺	置換基効果 I 「誘起効果」		誘起効果について説明できる。				
		6週 🏻 🖺	置換基効果Ⅱ「共役と共鳴」		共役や共鳴を例を挙げて説明できる。				
		7週 置	置換基効果Ⅲ「共鳴効果と超共役」		共鳴効果を説明できる。 超共役を例を挙げて説明できる。				
後期		8週 🗆	ニステルの加水分解反応		エステルの加水分解反応における触媒の働きの違いに ついて理解し、その反応機構を書くことができる。				
	4thQ	9週 三	フルボニル基の反応とその反応機構 I 「変異性とアルドール縮合」		グト・エノール互変異性を理解し、説明できる。				
		10/2	ルボニル基の反応とその反応機構Ⅱ「a-水素が関与 る縮合反応(1回目)」						
		11週 7	コルボニル基の反応とその反応機構Ⅱ 「る縮合反応(2回目)」	ロー水素が関与	カルボニル基の反応における特徴を理解し、その反応機構を書くことができる。				
			d位反応 I 「ピナコール・ピナコロン		ピナコール・ピナコロン転位反応について、その基本的な反応機構を書くことができる。 ピナコール・ピナコロン転位反応について、反応機構				
			d位反応 I 「ピナコール・ピナコロン	転位(2回目)」	ピナコール・ピナコロン転位反応について、反応機構の多様性を説明できる。				
		I	d位反応Ⅱ「Hofmann転位」		Hofmann転位反応について、その反応機構を ができる。				
			☆位反応Ⅲ「その他の転位反応」	転位反応について、その反応機構を予想して書ができる。					
	<u> </u>	16週 =:/ の皆	2羽市党レが寺中帯						
モナル_	」アカリキ	-ユフムの写	学習内容と到達目標						

		分野	学習内容	学習内容の到達目	 標			到達レベル	授業週
				σ結合とπ結合にて	 いて説明できる。			4	
				σ結合とn結合について説明できる。			4		
				混成軌道を用い物	混成軌道を用い物質の形を説明できる。			4	
				混成軌道を用い物質の形を説明できる。			4		
				誘起効果と共鳴効果を理解し、結合の分極を予測できる。) o	4		
				誘起効果と共鳴効果を理解し、結合の分極を予測できる。		4			
				σ結合とn結合の違いを分子軌道を使い説明できる。		4			
				σ結合とπ結合の違いを分子軌道を使い説明できる。		4			
				ルイス構造を書くことができ、それを利用して反応に結びつける ことができる。		4			
				ルイス構造を書くことができ、それを利用して反応に結びつける ことができる。			4		
				共鳴構造について説明できる。			4		
				共鳴構造について説明できる。		4			
				炭化水素の種類と、それらに関する性質および代表的な反応を説明できる。		4			
			有機化学	炭化水素の種類と、それらに関する性質および代表的な反応を説 明できる。			反応を説	4	
				芳香族性についてヒュッケル則に基づき説明できる。			4		
				芳香族性についてヒュッケル則に基づき説明できる。				4	
	ム野叫の声	/レ 坐 ⊬₩	,	代表的な官能基に	関して、その構造	および性質を説明で	きる。	4	
門的能力	分野別の専 門工学 	化学・生物系分野	'	代表的な官能基に関して、その構造および性質を説明できる。		4			
				それらの官能基を含む化合物の合成法およびその反応を説明できる。			4		
				それらの官能基を含む化合物の合成法およびその反応を説明できる。			4		
				代表的な反応に関して、その反応機構を説明できる。			4		
				代表的な反応に関して、その反応機構を説明できる。			4		
				電子論に立脚し、構造と反応性の関係が予測できる。			4		
				電子論に立脚し、構造と反応性の関係が予測できる。			4		
				反応機構に基づき、生成物が予測できる。			4		
				反応機構に基づき、生成物が予測できる。			4		
				主量子数、方位量子数、磁気量子数について説明できる。) o	4	
				主量子数、方位量子数、磁気量子数について説明できる。			4		
				電子殻、電子軌道、電子軌道の形を説明できる。			4		
				電子殻、電子軌道、電子軌道の形を説明できる。				4	
				金属結合の形成について理解できる。				4	
			無機化学	金属結合の形成について理解できる。				4	
				電子配置から混成軌道の形成について説明することができる。			· きる。	4	
				電子配置から混成軌道の形成について説明することができる。			4		
				水素結合について説明できる。			4		
				水素結合について説明できる。			4		
平価割合			-1	小木作口に フいて	inut/j (この。			· · · · · · · · · · · · · · · · · · ·	
中間証			期末試験	₹ උග්		その他	合計	<u> </u>	
総合評価割合 30			70	0	0	0	0	100)
基礎的能力 20		2	20	0	0	0	0	40	
専門的能力 10			50	0	0	0	0	60	
分野横断的能力 0)	0	0	0	0	0	