	2丁坐宣至	 穿専門学校	開講年度	平成29年度 (授業科目	微積分II A			
科目基础		于一个	.	一十八八乙ュ十八文(2017 平皮)	1又来行口				
科目番号		0067			科目区分	一般 / 必	1 N 167			
科目番号0067授業形態講義・演習			= = = = = = = = = = = = = = = = = = =		単位の種別と単位		·			
開設学科	·		₹科(R2年度開講分		対象学年	3	. 2			
開設期		通年	一行(NZ牛皮用两刀	(4.0)	週時間数	2				
教科書/教材 新 微分積分			連升 T 三造 節≠							
担当教員		宮本 拓					3 即入 IE 3石有 八口本因音			
<u>追回教员</u> 到達目標			<i>y</i>							
		15一ツートフン	このおった ない		マが ホ キ フ					
②基本的 ③2重積分 ④2重積分	な関数のテ 分について理 分の変数変換	イラー展開る 里解し, 計算	IMがてさる。級数 とマクローリン展開 することができる。 計算することができ	ができる。	<i></i>					
ルーブ!	リック				1					
			理想的な到達し		標準的な到達レベ		未到達レベルの目安			
評価項目	1			容を理解し、応用	各授業項目の内容	を理解している	各授業項目の内容を理解していな い。			
評価項目	2		(6.9)	できる。 			010			
評価項目										
		項目との関	 引名		1					
			不可							
	育到達度目 士 笠	/示 (ロ <i>)</i>								
教育方法	広寺	BB¥L ~ □	マロ しつぎ キハ ハー・・	·구쌈평→고						
概要			展開と2重積分につい		中佐士ス 四十ジの	1+100/\BB 0=1	吹ん字伝子 フ			
授業の進	め方・方法	中间試験 定期試験	Rは共進科日試験日 食の成績を70%. 課	に100分间の試験を 題・小テスト・到達	実施する。期末試験 度試験(数学)・授業	はIUU分間の試態度の総点を30	験を実施する。)%として総合的に評価し,60点以上			
		を合格と	ごする。				*			
注意点		微分と積	量分の計算に習熟し 表別なる に言かれて	ておくこと。また,	単に形式的解法に終	始することなく	, 基本概念や本質的な解法について			
		(の埋解を	と深めるよう努力す	<u>ること。</u>						
授業計画	典	1.	T							
		週	授業内容			週ごとの到達目標				
		1週	関数の展開			多項式による近似(1)				
		2週	関数の展開			多項式による近似(1)				
		3週	関数の展開			多項式による近似(2)				
	1stQ	4週	関数の展開		-	多項式による近似(2)				
	1300	5週	関数の展開			数列の極限				
		6週	関数の展開			ハろいろな数列の	D極限			
		7週	関数の展開			演習				
前期		8週	関数の展開			級数				
		9週	関数の展開			級数				
		10週	関数の展開			級数 べき級数とマクローリン展開				
		11週	関数の展開							
	2ndQ	12週	関数の展開			べき級数とマクローリン展開				
		13週	関数の展開			べき級数とマクローリン展開				
		14週	関数の展開			オイラーの公式				
		15週	関数の展開		7	演習				
		16週	2壬4八			つ手持八の中羊				
		1週	2重積分			全種分の定義 全種分の計算				
		2週	2重積分			2重積分の計算				
		3週	2重積分			2重積分の計算				
後期	3rdQ	4週	2重積分			2重積分の計算				
		5週	2重積分			極座標による2重積分				
		6週	2重積分			極座標による2重積分				
		7週	2重積分			演習				
		8週	2重積分			変数変換				
		9週	2重積分			変数変換				
		10週	2重積分			変数変換				
		11週	2重積分			広義積分				
	4thQ	12週	2重積分			広義積分 2重積分のいるいるか応用				
		13週	2重積分			2重積分のいろいろな応用				
		14週	2重積分			2重積分のいろいろな応用				
		15週	2重積分		ji	寅習				
		16週		+ ==						
	コアカリ)学習内容と到達				1			
分類		分野	学習内容	学習内容の到達目			到達レベル 授業週			
基礎的能		数学	数学	1またよ のよいよ エバ の	計算や、式の展開が	· 	3			

因数定理等を利用して、4次までの簡単な整式の因数分解ができ る。	3
分数式の加減乗除の計算ができる。	3
実数・絶対値の意味を理解し、絶対値の簡単な計算ができる。	3
平方根の基本的な計算ができる(分母の有理化も含む)。	3
複素数の相等を理解し、その加減乗除の計算ができる。	3
解の公式等を利用して、2次方程式を解くことができる。	3
因数定理等を利用して、基本的な高次方程式を解くことができる 。	3
簡単な連立方程式を解くことができる。	3
無理方程式・分数方程式を解くことができる。	3
1次不等式や2次不等式を解くことができる。	3
1元連立1次不等式を解くことができる。	3
基本的な2次不等式を解くことができる。	3
恒等式と方程式の違いを区別できる。	3
2次関数の性質を理解し、グラフをかくことができ、最大値・最 小値を求めることができる。	3
分数関数や無理関数の性質を理解し、グラフをかくことができる 。	3
簡単な場合について、関数の逆関数を求め、そのグラフをかくこ とができる。	3
無理関数の性質を理解し、グラフをかくことができる。	3
関数のグラフと座標軸との共有点を求めることができる。	3
累乗根の意味を理解し、指数法則を拡張し、計算に利用すること ができる。	3
指数関数の性質を理解し、グラフをかくことができる。	3
指数関数を含む簡単な方程式を解くことができる。	3
対数の意味を理解し、対数を利用した計算ができる。	3
対数関数の性質を理解し、グラフをかくことができる。	3
対数関数を含む簡単な方程式を解くことができる。	3
三角比を理解し、三角関数表を用いて三角比を求めることができる。一般角の三角関数の値を求めることができる。	3
角を弧度法で表現することができる。	3
三角関数の性質を理解し、グラフをかくことができる。	3
加法定理および加法定理から導出される公式等を使うことができる。	3
三角関数を含む簡単な方程式を解くことができる。	3
2点間の距離を求めることができる。	3
内分点の座標を求めることができる。	3
通る点や傾きから直線の方程式を求めることができる。 2つの直線の平行・垂直条件を利用して、直線の方程式を求める	3
ことができる。	
簡単な場合について、円の方程式を求めることができる。 積の法則と和の法則を利用して、簡単な事象の場合の数を数える	3
ことができる。	2
簡単な場合について、順列と組合せの計算ができる。	3
等差数列・等比数列の一般項やその和を求めることができる。 総和記号を用いた簡単な数列の和を求めることができる。	3
総相記号を用いた簡単な数列の相を求めることができる。 不定形を含むいろいろな数列の極限を求めることができる。	3
無限等比級数等の簡単な級数の収束・発散を調べ、その和を求め	3
ることかできる。	1
ることができる。 ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定 数倍)ができ、大きさを求めることができる。	3
	3
ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。	
ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 平面および空間ベクトルの内積を求めることができる。 問題を解くために、ベクトルの平行・垂直条件を利用することが	3
ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 平面および空間ベクトルの内積を求めることができる。 問題を解くために、ベクトルの平行・垂直条件を利用することができる。 空間内の直線・平面・球の方程式を求めることができる(必要に	3
ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 平面および空間ベクトルの内積を求めることができる。 問題を解くために、ベクトルの平行・垂直条件を利用することができる。 空間内の直線・平面・球の方程式を求めることができる(必要に応じてベクトル方程式も扱う)。 行列の定義を理解し、行列の和・差・スカラーとの積、行列の積	3 3 3
ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 平面および空間ベクトルの内積を求めることができる。 問題を解くために、ベクトルの平行・垂直条件を利用することが	3 3 3 3 3
ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 平面および空間ベクトルの内積を求めることができる。 問題を解くために、ベクトルの平行・垂直条件を利用することができる。 空間内の直線・平面・球の方程式を求めることができる(必要に応じてベクトル方程式も扱う)。 行列の定義を理解し、行列の和・差・スカラーとの積、行列の積を求めることができる。	3 3 3 3 3 3
ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 平面および空間ベクトルの内積を求めることができる。 問題を解くために、ベクトルの平行・垂直条件を利用することができる。 空間内の直線・平面・球の方程式を求めることができる(必要に応じてベクトル方程式も扱う)。 行列の定義を理解し、行列の和・差・スカラーとの積、行列の積を求めることができる。 行列の和・差・数との積の計算ができる。 行列の積の計算ができる。 逆行列の定義を理解し、2次の正方行列の逆行列を求めることが	3 3 3 3 3
ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 平面および空間ベクトルの内積を求めることができる。 問題を解くために、ベクトルの平行・垂直条件を利用することができる。 空間内の直線・平面・球の方程式を求めることができる(必要に応じてベクトル方程式も扱う)。 行列の定義を理解し、行列の和・差・スカラーとの積、行列の積を求めることができる。	3 3 3 3 3 3 3

			É	合成変換や逆変換を	表す行列を求める	ことができる。		3		
				平面内の回転に対応	する線形変換を表	す行列を求めるこ	とができ	3		
			_	<u>る。</u> 簡単な場合について	- 関数の極限を求	・ ・ かスァレができる		3		
			_	間半な場合について 微分係数の意味や、						
			<u> </u>	ができる。				3		
			_ I	算関数の定義を理解 ま、		粉たポムファレが	゚゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙	3		
			1	責・商の導関数の公	江を用いて、特民	釵を氷めることか	かできる	3		
			É	合成関数の導関数を	求めることができ	る。		3		
			_ I	三角関数・指数関数				3		
			ļ.	逆三角関数を理解し	,、逆三角関数の導	関数を求めること	ができる	3		
				関数の増減表を書い できる。	Nて、極値を求め、	グラフの概形をか	くことが	3		
			杜	亟値を利用して、関	数の最大値・最小	値を求めることが	できる。	3		
			fi i	簡単な場合について	、関数の接線の方	程式を求めること	ができる	3		
				2次の導関数を利用	 して、グラフの凹i		 できる。	3		
				関数の媒介変数表示 を求めることができ		数を利用して、そ	の導関数	3		
			I -	不定積分の定義を理		: 積分を求めること	ができる	3		
			<u> </u>	 置換積分および部分	 }積分を用いて、不	 定積分や定積分を	求めるこ	3		
				とができる。						
			[]	定積分の定義と微積 ることができる。		肝し、間早は正視	() (で水の)	3		
			I	微積分の基本定理を				3		
			_ I	定積分の基本的な計 置換積分および部分		· ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	がブキス	3		
								3		
				分数関数・無理関数 ・定積分を求めるこ	ことができる。			3		
				簡単な場合について ることができる。	、曲線で囲まれた	:図形の面積を定積	分で求め	3		
			信。	簡単な場合について	、曲線の長さを定	積分で求めること	ができる	3		
		簡単な場合について、立体の体積を定積分で求めることができる。					ができる	3		
				2変数関数の定義域を理解し、不等式やグラフで表すことができる。				3		
			U	いろいろな関数の偏導関数を求めることができる。						
			É	合成関数の偏微分法を利用して、偏導関数を求めることができる。						
			î	簡単な関数について、2次までの偏導関数を求めることができる。				3		
	ー 偏導関数を用いて、基本的な2変数関数の極値を求めることがで きる。				ことがで	3				
		2重積分の定義を理解し、簡単な2重積分を累次積分に直して求めることができる。					して求	3		
			I –	2重積分を累次積分になおして計算することができる。						
			 	極座標に変換することによって2重積分を求めることができる。						
			_ I	2重積分を用いて、簡単な立体の体積を求めることができる。					-	
				微分方程式の意味を理解し、簡単な変数分離形の微分方程式を解 くことができる。						
			I —	基本的な変数分離形の微分方程式を解くことができる。				3		
			I —	簡単な1階線形微分				3	+	
			I —	定数係数2階斉次線形微分方程式を解くことができる。 独立試行の確率、余事象の確率、確率の加法定理、排反事象の確率を理解し、簡単な場合について、確率を求めることができる。						
			2							
			<u> </u>	条件付き確率、確率の乗法定理、独立事象の確率を理解し、簡単 な場合について確率を求めることができる。						
				1次元のデータを整理して、平均・分散・標準偏差を求めることができる。						
評価割合										
	試験		課題等	相互評価	態度	ポートフォリオ	その他		計	
総合評価割合			30	0	0	0	0		.00	
基礎的能力	70		30 n	0	0	0	0		.00	

専門的能力

分野横断的能力 0