小山工業高等専門学校		開講年度	令和02年度(2020年度)	授業科目	材料学		
科目基礎情報								
科目番号	0053			科目区分	専門 / 必	専門 / 必修		
授業形態	講義			単位の種別と単位数	数 履修単位	: 2		
開設学科	機械工学科			対象学年	3	3		
開設期	通年			週時間数	2	2		
教科書/教材	佐々木雅人著:「機械材料入門」、オーム社							
担当教員	今泉 文伸							
到達日煙								

|到達日標

- 1.金属の結晶構造について説明できる。
 2.炭素鋼の状態図と組織および熱処理について説明できる。
 3.合金鋼の分類と物性について説明できる。
 4.非鉄金属材料の分類と物性について説明できる。
 5.非金属材料,複合材料の分類と物性について説明できる。

ルーブリック

理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
金属の結晶構造について正確に説 明できる。	金属の結晶構造について説明できる。	金属の結晶構造について説明できない。
炭素鋼の状態図と組織および熱処 理について正確に説明できる。	炭素鋼の状態図と組織および熱処 理について説明できる。	炭素鋼の状態図と組織および熱処 理について説明できない。
合金鋼の分類と物性について正確 に説明できる。	合金鋼の分類と物性について説明 できる。	合金鋼の分類と物性について説明 できない。
非鉄金属材料の分類と物性につい て正確に説明できる。	非鉄金属材料の分類と物性につい て説明できる。	非鉄金属材料の分類と物性につい て説明できない。
非金属材料,複合材料の分類と物性について正確に説明できる。	非金属材料,複合材料の分類と物性について説明できる。	非金属材料,複合材料の分類と物性について説明できない。

学科の到達目標項目との関係

学習・教育到達度目標 ④

教育方法等

概要	金属の結晶構造、平衡状態図について学び、鉄と鋼、合金鋼、鋳鉄、非鉄金属材料、非金属材料を理解することを この授業でおこなう。
授業の進め方・方法	座学形式でおこなう。また、レポート課題を出すので、期限に遅れずに提出すること
注意点	講義中に説明した事項を単に覚えるだけではなく、その材料が必要とされた背景、特徴や欠点についても十分理解すること。

授業計画

授業計画	<u> </u>						
		週	授業内容	週ごとの到達目標			
		1週	機械材料のあらまし(種類と分類)	機械材料の種類と分類について説明できる			
		2週	金属材料の構造(金属の結晶学)	金属材料の構造について説明できる			
		3週	金属材料の塑性変形	金属材料の塑性変形について説明できる			
	1ctO	4週	金属材料の状態変化	金属材料の状態変化について説明できる			
1stQ	ISIQ	5週	平衡状態図(その1)全率固溶型	平衡状態図(全率固溶型)について説明できる			
		6週	平衡状態図(その2)共晶型	平衡状態図(共晶型)について説明できる			
		7週	状態図に関する演習、金属材料の加工性	金属材料の加工性について説明できる			
		8週	前期中間試験	これまでの範囲を理解する			
前期		9週	答案返却と説明、材料試験(その1)引張試験	材料試験(引張試験)について説明できる			
		10週	材料試験(その2)曲げ・硬さ・衝撃試験 他	材料試験(曲げ・硬さ・衝撃試験)について説明できる			
		11週	鉄と鋼(その1)鉄鋼の製法と分類	鉄と鋼の製法と分類について説明できる			
	2ndQ	12週	鉄と鋼(その2)純鉄の変態	純鉄の変態について説明できる			
		13週	鉄と鋼(その3)Fe-C 系状態図(I)	Fe-C 系状態図について説明できる			
		14週	鉄と鋼(その4)Fe-C 系状態図(Ⅱ)	Fe-C 系状態図について説明できる			
		15週	前期期末試験	これまでの範囲を理解する			
		16週	試験返却、材料試験と鉄と鋼に関する問題演習	これまでの範囲を理解する			
		1週	鉄と鋼(その5)炭素鋼の熱処理と組織	炭素鋼の熱処理と組織について説明できる			
		2週	鉄と鋼(その6)炭素鋼の分類と用途・性質	炭素鋼の分類と用途・性質について説明できる			
		3週	合金鋼(その1)機械構造用合金鋼	機械構造用合金鋼について説明できる			
	3rdQ	4週	合金鋼(その2)工具用合金鋼	工具用合金鋼について説明できる			
	SiuQ	5週	合金鋼(その3)鉄鋼の腐食と防食	鉄鋼の腐食と防食について説明できる			
		6週	合金鋼(その4)耐食鋼	耐食鋼について説明できる			
後期		7週	合金鋼(その5)高温での鉄鋼の性質、耐熱鋼	高温での鉄鋼の性質、耐熱鋼について説明できる			
		8週	後期中間試験	これまでの範囲を理解する			
		9週	答案返却と説明、鋳鉄(その1)鋳鉄の製法	鋳鉄の製法について説明できる			
	4thQ	10週	鋳鉄(その2)状態図と組織図、鋳鉄の性質と分類	鋳鉄の状態図と組織図、鋳鉄の性質と分類について説 明できる			
	TuiQ	11週	非鉄金属(その1)アルミニウム	非鉄金属(アルミニウム)について説明できる			
		12週	非鉄金属(その2)マグネシウム、チタン、銅等	非鉄金属(マグネシウム、チタン、銅)について説明 できる			

		13ì	<u> </u>	非金属	属材料(その	1) ガラス、セラミックス 非金属材料(ガラス、セラミ きる			(ックス) に [・]	ついて説明で		
		14ì	<u> </u>	非金属	属材料(その	2) プラスチック、ゴム 非金属材 る		非金属材料(プラス る	材料(プラスチック、ゴム)について説明でき			
		15ì	围	複合材	 合材料・機能材料			複合材料・機能材料について説明できる				
		16ì	围	後期期	期末試験			これまでの範囲を理				
モデルコス	アカリニ	キユ :	ラムの	学習	内容と到達	目標						
 分類			分野		学習内容	学習内容の到達目				到達レベル	授業週	
						機械材料に求めら	機械材料に求められる性質を説明できる。			4		
						金属材料、非金属の明できる。	金属材料、非金属材料、複合材料、機能性材料の性質と用途を説明できる。					
		分野別の専 関丁学 機械系名				引張試験の方法を理解し、応力-ひずみ線図を説明できる。				4		
						硬さの表し方および硬さ試験の原理を説明できる。				4		
						脆性および靱性の意味を理解し、衝撃試験による粘り強さの試験 方法を説明できる。				4		
						疲労の意味を理解し、疲労試験とS-N曲線を説明できる。				4		
						機械的性質と温度の関係およびクリープ現象を説明できる。				4		
専門的能力					材料	金属と合金の結晶構造を説明できる。				4	前1,前4	
	分野別の			機械系分野		金属と合金の状態変化および凝固過程を説明できる。				4		
.31 3-313073	門上字		1/2//2/(///	1/2/1-1	合金の状態図の見方を説明できる。				4			
						塑性変形の起り方を説明できる。				4		
					加工硬化と再結晶がどのような現象であるか説明できる。				4			
						鉄鋼の製法を説明できる。				4		
						炭素鋼の性質を理解し、分類することができる。				4		
						Fe-C系平衡状態図の見方を説明できる。				4		
						焼きなましの目的と操作を説明できる。				4		
						焼きならしの目的と操作を説明できる。				4		
						焼入れの目的と操作を説明できる。				4		
/ A						焼戻しの目的と操	作を説明できる。			4		
评価割合_	1			-1		T	T	1.0	1	- 1.		
^ ~ / / ^	試	-		発	表	相互評価	態度	ポートフォリオ	その他	合		
総合評価割合			0			0	0	0	15	10		
基礎的能力_	65			0		0	0	0	15	80		
專門的能力 2018年第2014年	20 0			0	0	0	0	20				
分野横断的能	七九 0			0		0	0	0	0	0		