長岡工業高等専門学校 開講4			平成31年度 (2019年度)			業科目	基礎電気回路			
科目基礎情報										
科目番号	0024			科目区分 専門		専門/必	/ 必修			
授業形態	講義		単位の種別と単位数	数	履修単位	<u>:</u> 2				
開設学科	電気電子シス	テム工学科	対象学年		2					
開設期	通年		週時間数		2					
教科書/教材	書/教材 小関 修・光本 真一、基礎電気回路ノートII、電気書院/小亀 英己、基礎からの交流理論、電気学会									
担当教員	旦当教員 竹内 麻希子									
到達目標										
(科目コード: 21530, 英語名: Fundamental Electric Circuits) この科目は長岡高専の教育目標の(D)と主体的に関わる。この科目の到達目標と、各到達目標と長岡高専の学習・教育到達目標との関連を、到達目標、評価の重み、学習・教育目標との関連の順で次に示す。①電気基本法則(オームの法則、キルヒホッフの法則)について理解する。25%(c1)(d1)、②正弦波交流の取り扱い、回路素子の性質と働き、基本的直列/並列/直並列回路の解析を修得する。25%(c1)(d1)、③回路における複素数、極座標、三角関数等の表示法を理解する。25%(c1)(d1)、④単相電力、エネルギーについて、その考え方や求め方を理解する。25%(c1)(d1)、④										

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	最低限の到達レベル	未到達レベルの目安
評価項目1	基本法則(オームの法則、 キルヒホッフの法則)につ いて詳細に計算できる。	基本法則(オームの法則、 キルヒホッフの法則)につ いて理解できる。	基本法則(オームの法則、 キルヒホッフの法則)につ いて概ね理解できる。	左記に到達していない。
評価項目2	正弦波交流の取り扱い、回路素子の性質と働き、基本的直列/並列/直並列回路の解析について詳細に計算できる。	正弦波交流の取り扱い、回路素子の性質と働き、基本的直列/並列/直並列回路の解析について理解できる。	正弦波交流の取り扱い、回路素子の性質と働き、基本的直列/並列/直並列回路の解析について概ね理解できる。	左記に到達していない。
評価項目3	回路における複素数、極座標、三角関数等の表示法を 詳細に説明できる。	回路における複素数、極座標、三角関数等の表示法を理解できる。	回路における複素数、極座標、三角関数等の表示法を 概ね理解できる。	左記に到達していない。
評価項目4	単相電力、エネルギーにつ いて詳細に計算できる。	単相電力、エネルギーにつ いて理解できる。	単相電力、エネルギーにつ いて概ね理解できる	左記に到達していない。

学科の到達目標項目との関係

学習・教育到達目標 c1 学習・教育到達目標 d1

教育方法等

概要	直流回路、基本交流回路(R、L、Cの直列、並列、直並列)、交流回路の複素数、極座標・三角関数・指数関数表示法とフェーザ図、単相電力等の交流回路の基礎を修得する。 ○関連する科目:電気電子工学基礎(前年度履修)、電気数学(本年度履修)、電気回路 I (次年度履修)
授業の進め方・方法	必要に応じてプロジェクター及び配布プリントを利用した授業を行う。授業の後半では演習を実施する。また、必要に 応じて小テストを実施する。小テストや定期試験の理解度に応じて、図書館学習支援や補講を行う。
注意点	授業内で演習および小テストを実施するため、予習・復習をしっかりと行い、集中して説明を聞く必要がある。また、数学の基礎知識(特に三角関数、複素数、連立方程式及び簡単な微積分)が必要である。授業内でこれらの数学に関する補充はするが、自らも修得する努力が必要である。また、電気数学の科目にも真摯に取り組み、基本的な数学力を身に付けること。再試験は学年末のみであるので、日常的に身につけることを目指すこと。

授業計画

		週	授業内容	週ごとの到達目標				
		1週	直流回路の復習テスト	直流回路のオームの法則およびキルヒホッフの法則を 復習する。				
		2週	電気数学(三角関数と正弦波交流)	三角関数と正弦波交流の関係を理解する。				
		3週	電気数学(微積分と正弦波交流)	微積分と正弦波交流の関係を理解する。				
	1stQ	4週	正弦波交流の基礎	正弦波交流の基礎を理解する。				
		5週	正弦波交流の基礎	正弦波交流の基礎を理解する。				
		6週	正弦波交流の基礎	正弦波交流の基礎を理解する。				
		7週	演習	これまでの内容を理解する。				
		8週	前期中間試験	試験時間:50分				
前期		9週	試験解説およびRLCだけの基本回路	学んだ知識の再確認と修正ができる。また、RLCだけの基本回路について理解する。				
		10週	RLCだけの基本回路	RLCだけの基本回路について理解する。				
		11週	R、L、C直列回路	R、L、C直列回路について理解する。				
	2540	12週	R、L、C並列回路	R、L、C並列回路について理解する。				
	2ndQ	13週	演習	これまでの内容を理解する。				
		14週	R、L、C直並列回路	R、L、C直並列回路について理解する。				
		15週	演習	これまでの内容を理解する。				
		16週	前期期末試験 17週:試験解説・発展授業	学んだ知識の再確認と修正ができる。				
		1週	直列共振回路	直列共振回路について理解する。				
		2週	並列共振回路	並列共振回路について理解する。				
後期		3週	電気数学(複素数)	複素数について理解する。				
	3rdQ	4週	電気数学(複素数)	複素数について理解する。				
		5週	複素数、極座標、三角関数等による回路表示	複素数、極座標、三角関数等による回路表示を理解す る。				
		6週	複素数、極座標、三角関数等による回路表示	複素数、極座標、三角関数等による回路表示を理解す る。				

		7週		後期中	 中間試験		試験時間:50分						
		8週		試験解説およびこれまでの復習				学んだ知識の再確認と修正ができる。					
		-		復素インピーダンスによる直並列回路解析				複素インピーダンスによる直並列回路解析が理解できる。					
								複素インピーダンスによる直並列回路解析が理解でき る。					
	11週		アドミタンスによる回路解析				アドミタンスによる回路解析が理解できる。						
4	thQ	12վ		アドミ	ミタンスによる	3回路解析		アドミタンスによる回路解析が理解できる。					
	13週 14週 15週 16週			交流電	流電力			交流電力について理	里解する。				
			<u></u>	交流電	流電力			交流電力について理	里解する。				
			週 演習		習			これまでの内容を理	里解する。				
			<u></u>	後期期末試験 17週:試験解説・		発展授業 試験時間:50分							
モデルコア	アカリキ	-ユ=	ラムの	学習	内容と到達	目標							
分類			分野		学習内容	学習内容の到達目標				到達レベル		授業週	
						正弦波交流の特徴を説明し、周波数や位相などを計算できる。			きる。	4		前4	
						平均値と実効値を説明し、これらを計算できる。			4		前5		
						正弦波交流のフェーザ表示を説明できる。			4		後4		
	分野別の専 門工学				R、L、C素子における正弦波電圧と電流の関係を説明できる。						前9,前10		
					電気回路	瞬時値を用いて、交流回路の計算ができる。			4		前5		
専門的能力		専電気・		フェーザ表示を用いて、交流回路の計算ができる。			4		後5,後6				
	门工子	系分野				インピーダンスとアドミタンスを説明し、これらを計算できる。			4		後11,後12		
						キルヒホッフの法則を用いて、交流回路の計算ができる。			3		後9		
						合成インピーダンスや分圧・分流の考え方を用いて、交流回路の 計算ができる。			流回路の	3		後10	
						直列共振回路と並列共振回路の計算ができる。			3		後1,後2		
						交流電力と力率を説明し、これらを計算できる。			3		後13,後14		
評価割合													
	前期中間試験		前期期末試験		後期中間試験	後期期末試験	復習テスト 小テスト		合計				
総合評価割合 15		15		20	20	15	15		100				
基礎的能力 15		15		20	20	15	15		100				
専門的能力 0			0		0	0	0	0		0			
分野横断的能力 0		0		0 0 0		0							