長岡	 丁業高等	専門学校	開講年度	平成30年度 (2	2018年度)	授業	美科目 「F	 電子デバ	 イス工学	
科目基礎		<u> </u>	על ד בּוּשנולו	2 1/3/30 1/32 (2010 (1/2)		KIIII J			
科目番号	ACTIOTIK	0178			科目区分	1	専門 / 選択	?		
授業形態		講義			単位の種別と単位		313/ <u>23</u> 覆修単位:			
開設学科		電子制御]工学科		対象学年		5			
開設期		後期			週時間数					
教科書/教					12.01=337					
担当教員		玉山 泰宏	<u> </u>							
到達目標	 票									
②さまざる ③光デバー	まな電子デノイス・磁気	(イスの動作	≒原理を理解する。	わる。 経目標との関連を、到 好する。40% (c1) 20% (c2) Ľ解する。40% (c2)	達目標、評価の重	色み、学習	・教育到途	達目標との	関連の順で次	だいます。
ルーブリ	ノツク		田中日かたこのいまし		無洗われる	***I		+ 511+1		
評価項目:	1		理想的な到達 半導体・誘電(礎的物性を説)	レベルの目安 体・光についての基 明できる	半導体・誘雷体・光についての基準導体			半導体・	ンベルの目安 ・誘電体・光についての基 生を理解していない	
評価項目2	2			子デバイスの動作原	さまざまな電子デバイスの動作原しさまざ			さまざま	ェエハ ここ な電子デバイ していない	
評価項目3			材料の特徴を	滋気デバイス・ナノ 説明できる					ス・磁気デバ 徴を理解して	
		目との関								
^{学習・教育} 教育方法		(c1) 学習・	教育到達目標 (c2)						
概要 受業の進	め方・方法	じめに、 次に、ダ 特徴とそ ○関連す	結晶構造、固体の イオードやトラン の応用について理 る科目:電子回路 工学(前期履修)	Fの各種機能性材料を 電子的現象を学び、 ジスタ・集積回路の 2解を深める。 SII(前年度履修)、	p形・n形半導体 基本と応用を学ぶ	について 、。続いて	バンド理論 、光デバ~	命を通して イス・磁気	理解する。 デバイス・ナ	ノ材料等σ
注意点	-573 731 <u>A</u>		:」、「電気磁気学	·」、「電子回路」、	及び5 年前期「セ	ンサーエ	学」で学ん	だ内容を-	一度復習して	受講するこ
授業計画	<u> </u>	1	T							
		週	授業内容			週ごとの到達目標				
		1週	結晶構造		原子間に働く力と結晶構造について理解する					
		2週	格子振動			格子振動と固体の熱的性質について理解する				
		3週	バンド理論			バンド理論について理解し、導電体・絶縁体・半導体 の違いについて説明できる				
		4週	導電体			導電帯の電気的性質や熱的性質、およびその応用について理解する				
	3rdQ	5週	半導体			真性半導体と不純物半導体におけるキャリアの振舞に について理解する				
後期		6週	半導体デバイス			金属と半導体および半導体と半導体を接合させた場合のパンド図について理解する。それをふまえて、ダイオードやトランジスタの動作原理を説明できる				
		7週	半導体における熱	快電、光電効果		半導体における熱電効果、光電効果について理解し、その応用について説明できる				
		8週	中間試験		- - - - - - - - - -					
		9週	絶縁体			絶縁体の例と絶縁破壊現象について理解する				
		10週	誘電体							
		11週 12週	超伝導体			磁性体とその応用について理解する 超伝導体の性質とその応用について理解する				
	4thQ	13週	世仏等体 光デバイス			光と光デバイスについて理解する				
		14週	ナノ材料			ナノスケールでの電子の振舞いについて理解し、ナン 材料の動作原理を説明できる				
		15週	期末試験							
		16週								
			学習内容と到							
モデルニ	コアカリコ	Fユラムの							711)±1 an 11	授業週
	コアカリキ	Fユラムの 分野	学習内容	学習内容の到達目	標				到達レベル	
モデル <u>:</u> ^{分類}	コアカリキ					を説明で	 きる。		到達レベル 4	JANAE
	コアカリキ			学習内容の到達目 電子の電荷量や質				ができる		32782
		分野	学習内容	学習内容の到達目 電子の電荷量や質	量などの基本性質 トの定義を説明し			ができる	4 4	72752
分類		分野	学習内容 電子 電子 電子	学習内容の到達目 電子の電荷量や質 エレクトロンボル。 原子の構造を説明 パウリの排他律を	量などの基本性質 トの定義を説明してきる。 理解し、原子の電	、単位換 子配置を	算等の計算 説明できる		4	
		分野	学習内容 電子 電子 電子	学習内容の到達目 電子の電荷量や質 エレクトロンボル。 原子の構造を説明 パウリの排他律を 結晶、エネルギー	量などの基本性質トの定義を説明してきる。 理解し、原子の電バンドの形成、フ	、単位換 子配置を ェルミ・	算等の計算 説明できる ディラック	。 う。 7分布を理	4 4	
分類		分野	学習内容 電子 電子 電子	学習内容の到達目 電子の電荷量や質 エレクトロンボル。 原子の構造を説明 パウリの排他律を	量などの基本性質 トの定義を説明し できる。 理解し、原子の電 バンドの形成、フ 体のエネルギーバ	、単位換 子配置を ェルミ・ ンド図を	算等の計算 説明できる ディラック 説明できる	。 7分布を理 3。	4 4 4	

				半導	体のエネルギーバンド図を説	明できる。	4	
				pn接合の構造を理解し、エネルギーバンド図を用いてpn接合の電流一電圧特性を説明できる。			4	
				バイ 用い	ポーラトランジスタの構造を てバイポーラトランジスタの	4		
			4					
	汎用的技能	汎用的技能	汎用的技能	日本語と特定の外国語の文章を読み、その内容を把握できる。			3	
() == 144 vis ()				他者とコミュニケーションをとるために日本語や特定の外国語で正しい文章を記述できる。			3	
分野横断的 能力				他者が話す日本語や特定の外国語の内容を把握できる。			3	
1000				日本語や特定の外国語で、会話の目標を理解して会話を成立させることができる。			3	
				円滑なコミュニケーションのために図表を用意できる。			3	
評価割合								
		中間試験			期末試験	レポート	合計	
総合評価割合		40	40		40	20	100	
基礎的能力		5	5		5	5	15	
専門的能力		30	30		30	10	70	
分野横断的能力		5	5		5	5	15	