富山高等専門学校			開講年度 平成29年度 (2017年度)			授業科目 工業熱力学Ⅱ				
科目基礎					•		•			
科目番号					科目区分		専門 / 必修	専門 / 必修		
授業形態					単位の種別と単位					
開設学科 商船学科					対象学年	3				
開設期後期					週時間数	時間数 2				
			 Pすい熱力学(第3版)』, 森北出版株							
担当教員		経田 僚昭		,						
到達目標	 票	•								
近年の打 いる。熱 。	技術開発には力学を「エネ	、ただ性能をルギー問題の	追求するのではた 基礎的考え方を著	よく如何に持続可能 養う学問」として捉	な社会を実現するだえ、熱力学の第二)	か、地球法則、素	球環境を意識 蒸気による熱	哉したものとして 熱と仕事の変換を	の視点がおかれて 中心に理解出来る	
ルーブリ	ノック				I = 1/4 // = 1/4 .			1		
			理想的な到達レ	標準的な到達レベルの目安			未到達レベルの目安			
評価項目1			カルノーサイクルを中心に各種熱 機関サイクルの概要を理解し、説 明できる			クルを中心に各種熱 の概要が理解できた		カルノーサイクルを中心に各種熱 機関サイクルの概要が理解が不十 分		
評価項目2			説明できる	則について理解し	熱力学の第二法則について理解した			熱力学の第二法 不十分	則について理解が	
評価項目3			蒸気の基本性質を理解でき、計算 で各種状態量を計算できる 蒸気の基本性質を理解			を理解で	できた 蒸気の基本性質の理解が不十分			
		目との関係	•							
教育方法	去等									
概要		カルノーサ	サイクルを中心に各種熱機関サイクルの概要, 熱力学の第二法則、蒸気の基本性質を理解する.							
注意点	め方・方法		関する科目 (その学 学 ニネルギ はの性質)は試験70%,小: ○三)	ア人下と誄翅が30	U %, *	<u>© Б</u> #1Щ О (J %以土小		
授業計画	画									
		週 授	業内容			週ごとの	の到達目標			
後期		_{1週} ガサ	ガイダンス サイクルについて							
		2週 カ	カルノーサイクル							
		3週 熱	機関の基本サイクル			オットーサイクル、ディーゼルサイクル、ランキンサイクル、ブレイトンサイクルについて理解する				
		4週 エ	ニントロピーの概念(1)			カルノーサイクルからエントロピーの考え方が理解出 来る				
		5週 エ	エントロピーの概念(2)			エントロピーの持つ意味が理解出来る				
		6週 エ	エントロピーの概念(3)			身近な現象からエントロピーの増加の原理を説明でき る				
		7週 中	中間試験							
		8週 蒸	蒸気の基本的性質			水(蒸気)の基本的性質				
		9週 蒸	蒸気の持つ特性			湿り飽和蒸気, 乾き飽和蒸気, 過熱蒸気について理解 する				
		4 O/E	蒸気表と蒸気線図(1)			湿り飽和蒸気,乾き飽和蒸気,過熱蒸気				
		10週 蒸		蒸気表と蒸気線図(2)			湿り飽和蒸気, 乾き飽和蒸気, 過熱蒸気			
	I		,	2)		湿り飽	和蒸気,乾		M. A.	
		11週 蒸	,	2)	-		和蒸気, 乾 イクルの概!		· 然気	
	4thQ	11週蒸12週再	- 気表と蒸気線図(2)		再生サ	,		· · · · · · · · · · · · · · · · · · ·	
	4thQ	11週 蒸 12週 再 13週 再 14週 再	気表と蒸気線図(生サイクル(1)	2)		再生サ 再生サ 再生サ	イクルの概! イクルの構! イクルにお!	成 ける作動流体の状	態量が計算できる	
	4thQ	11週 蒸 12週 再 13週 再 14週 再 15週 再	気表と蒸気線図(生サイクル(1) 生サイクル(2) 生サイクル(3) 生サイクル(4)	2)		再生サ 再生サ 再生サ	イクルの概! イクルの構! イクルにお!	成	態量が計算できる	
	4thQ	11週 蒸 12週 再 13週 再 14週 再 15週 再	気表と蒸気線図(生サイクル(1) 生サイクル(2) 生サイクル(3)	2)		再生サ 再生サ 再生サ	イクルの概! イクルの構! イクルにお!	成 ける作動流体の状	態量が計算できる	
モデルニ	4thQ	11週 蒸 12週 再 13週 再 14週 再 15週 再 16週 期	気表と蒸気線図(生サイクル(1) 生サイクル(2) 生サイクル(3) 生サイクル(4)			再生サ 再生サ 再生サ	イクルの概! イクルの構! イクルにお!	成 ける作動流体の状	態量が計算できる	
	4thQ	11週 蒸 12週 再 13週 再 14週 再 15週 再 16週 期	気表と蒸気線図(生サイクル(1) 生サイクル(2) 生サイクル(3) 生サイクル(4) 末試験			再生サ 再生サ 再生サ	イクルの概! イクルの構! イクルにお!	成 ける作動流体の状 効率が計算できる	態量が計算できる	
分類	4thQ - コアカリキ	11週 蒸 12週 再 13週 再 14週 再 15週 再 16週 期 ユラムの学	気表と蒸気線図(生サイクル(1) 生サイクル(2) 生サイクル(3) 生サイクル(4) 末試験 習内容と到達	目標		再生サ 再生サ 再生サ	イクルの概! イクルの構! イクルにお!	成 ける作動流体の状 効率が計算できる	態量が計算できる	
分類	4thQ	11週 蒸 12週 再 13週 再 14週 再 15週 再 16週 期 ユラムの学	気表と蒸気線図(生サイクル(1) 生サイクル(2) 生サイクル(3) 生サイクル(4) 末試験 望内容と到達 学習内容	 目標 学習内容の到達目相		再生サー	イクルの概 イクルの構 イクルにお イクルの熱	成 ける作動流体の状 効率が計算できる 到達し	態量が計算できる	
分類 評価割合	4thQ コアカリキ コ 試験	11週 蒸 12週 再 13週 再 14週 再 15週 再 16週 期 ユラムの学	気表と蒸気線図(生サイクル(1) 生サイクル(2) 生サイクル(3) 生サイクル(4) 未試験 ・習内容と到達 学習内容	目標 学習内容の到達目 相互評価	票態度	再生サー 再生サー 再生サー 再生サー ポート	イクルの概! イクルの構! イクルにお!	成 ける作動流体の状 効率が計算できる	態量が計算できる	
分類 評価割合 総合評価額	4thQ コアカリキ 会 試験 割合 210	11週 蒸 12週 再 13週 再 14週 再 15週 再 16週 期 ユラムの学	気表と蒸気線図(生サイクル(1) 生サイクル(2) 生サイクル(3) 生サイクル(4) 末試験 望内容と到達 学習内容	差目標 学習内容の到達目相 相互評価 30	票 態度 30	再生サー 再生サー 再生サー オポート 15	イクルの概 イクルの構 イクルにお イクルの熱	成ける作動流体の状効率が計算できる 到達し	態量が計算できるバル 授業週合計300	
分類 評価割合	4thQ コアカリキ 会 割合 210 カ 70	11週 蒸 12週 再 13週 再 14週 再 15週 再 16週 期 ユラムの学	気表と蒸気線図(生サイクル(1) 生サイクル(2) 生サイクル(3) 生サイクル(4) 未試験 習内容と到達 学習内容	目標 学習内容の到達目 相互評価	票態度	再生サー 再生サー 再生サー 再生サー ポート	イクルの概 イクルの構 イクルにお イクルの熱	成ける作動流体の状効率が計算できる 到達し	態量が計算できる	