富山高等専門学校		開講年度	平成30年度 (2018年度)		授業科目	解析学Ⅱ	
科目基礎情報							
科目番号	0135			科目区分	一般 /	選択	
授業形態	授業			単位の種別と単位数	数 履修単	位: 2	
開設学科	商船学科			対象学年	3		
開設期	後期			週時間数	4		
教科書/教材							
担当教員	河合 均						
到達目標							
2.亦数問数の原道問数の計算が表する							

- 2変数関数の偏導関数の計算ができる. 2変数関数の導関数を用いて、曲面の接平面の方程式を求めることができる. 2変数関数の偏導関数を用いて、極値を求めることができる. 陰関数定理を理解し、条件付極値問題を解くことができる. 2重積分の概念を理解し、累次積分を用いてその値を計算することができる.

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	2変数関数の偏導関数を用い,基本的な極値問題,条件付き極値問題 題を解くことができる.	2変数偏導関数を用い, 説平面の 方程式や陰関数の導関数を計算す ることができる.	2変数偏導関数を用い, 説平面の 方程式や陰関数の導関数を計算す ることができない.
評価項目2	2重積分の概念,変数変換を理解 し,基本的な2重積分を累次積分 を用いて計算することができる.	2重積分の概念を理解し,基本的な2重積分を累次積分を用いて計算することができる.	2重積分の概念を理解し,基本的な2重積分を累次積分を用いて計算することができない.
評価項目3	微分方程式の概念を理解し, 1階の基本的な微分方程式を解くことができる.	微分方程式の概念を理解し,変数 分離形の1階微分方程式を解くこ とができる.	微分方程式の概念を理解できない

学科の到達目標項目との関係

教育方法等

概要	前期解析学Iに引き続き、2変数関数とその導関数に関する概念を学ぶ。2重積分の概念とその応用を学ぶ。更に、今まで学んできた微分積分の復習を行い、常微分方程式の基礎概念と、基本的な解法を学ぶ。
授業の進め方・方法	教員単独による講義及び演習
注意点	評価が60点を満たない者は、願い出により追認試験を受けることが出来る。追認試験の結果、単位の修得が認められた者にあっては、その評価を60点とする。

授業計画

3///										
		週	授業内容	週ごとの到達目標						
		1週	ガイダンス、合成微分の導関数, 偏導関数	2変数関数の合成微分の公式とその応用を学ぶ.						
		2週	接平面と全微分	2変数関数の表す曲面の接平面の方程式の求め方と,全 微分の関係を学ぶ.更に,それを用いて関数値の近似値の求め方を学ぶ.						
		3週	積分の応用:2変数関数の極値	2変数関数の極値問題について学ぶ.						
	3.40	4週	微分の応用:陰関数の微分	陰関数の概念と、陰関数定理について学ぶ.						
	3rdQ	5週	微分の応用:陰関数の微分	条件付き極大,極小について学ぶ.						
		6週	2重積分と体積	2次関数の積分の概念を学ぶ.						
		7週	2重積分と累次積分	平面の領域について学ぶ、2重積分を累次積分を用いて計算する方法を学ぶ。						
後期		8週	中間試験	1回と7回までの講義内容について,定着度をみるために中間試験を行う.						
	4thQ	9週	2重積分と累次積分	いろいろな領域における累次積分を学ぶ.						
		10週	累次積分の順序変更	累次積分の順序変更について学ぶ.						
		11週	2重積分の変数変換	2変数関数の積分の変数変換,特に極座標変換について学ぶ.						
		12週	2重積分の応用	2重積分の応用(体積,1変数の広義積分)について 学ぶ.						
		13週	微分方程式	微分方程式の階数、解について学ぶ.						
		14週	微分方程式	1階の分離形,同次形,線形の微分方程式の解法について学ぶ.						
		15週	微分方程式	1階の分離形,同次形,線形の微分方程式の解法について学ぶ.						
		16週	期末試験の解説							

モデルコアカリキュラムの学習内容と到達目標

分類		分野	学習内容	学習内容の到達目標	到達レベル	授業週	
基礎的能力	数学	数学	数学	偏導関数を用いて、基本的な2変数関数の極値を求めることがで きる。	3		
				2重積分の定義を理解し、簡単な2重積分を累次積分に直して求めることができる。	3		
				極座標に変換することによって2重積分を求めることができる。	3		
				2重積分を用いて、簡単な立体の体積を求めることができる。	3		
				微分方程式の意味を理解し、簡単な変数分離形の微分方程式を解 くことができる。	3		
				簡単な1階線形微分方程式を解くことができる。	3		
110年割へ			•				

|評価割合

	試験	発表	相互評価	態度	ポートフォリオ	その他	合計
総合評価割合	70	0	0	0	0	30	100
基礎的能力	50	0	0	0	0	20	70
専門的能力	20	0	0	0	0	10	30
分野横断的能力	0	0	0	0	0	0	0