	 山高等専	 門学校	開講年度 令和03年度 (2		授業科目	電子物性論			
科目基础				-,					
科目番号		0042		科目区分	専門 / 選				
授業形態		授業		単位の種別と単位	位数 学修単位	: 2			
開設学科		エコデナ	ザイン工学専攻	対象学年	専2				
開設期		前期		週時間数	2				
教科書/教	· 対材	資料配布	<u> </u>	•	-				
担当教員		多田 和瓜	<u></u> 広						
到達目	 票	•							
2. 固体 3. 古典 4. 自由 5. 固体 6. 真性 7. n	のエネルギ- 半導体、不約	を理解できる モデルを理解 こより金属の -バンドの根 ・バンとは質が ・バックを	6。 発できる。 D電子状態を理解できる。 疣念を理解できる。 D成り立ちを理解できる。 F理解できる。						
ルーブ!									
			理想的な到達レベルの目安	想的な到達レベルの目安標準的な到達レベルの目安					
=の/年でご	1		格子振動の様態を適切に理解でき			未到達レベルの目安 牧ス振動の搭覧を理解できない。			
評価項目:			る。 固体比熱の理論を適切に理解でき	格子振動の様態を		格子振動の様態を理解できない。			
評価項目:	2		る。	固体比熱の理論を		固体比熱の理論を理解できない。			
評価項目:	3		古典的電気伝導モデルを適切に理解できる。	る。	モデルを理解でき	古典的電気伝導モデルを理解できない。			
評価項目	4		自由電子モデルにより金属の電子 状態を適切に理解できる。	自由電子モデルは状態を理解でき	こより金属の電子 る。	自由電子モデルにより金属の電子 状態を理解できない。			
評価項目:	5		固体のエネルギーバンドの概念を 適切に理解できる。	固体のエネルギ- 理解できる。	ーバンドの概念を	固体のエネルギーバンドの概念を 理解できない。			
評価項目	6		真性半導体、不純物半導体の成り 立ちを適切に理解できる。	真性半導体、不続立ちを理解できる。	純物半導体の成り る。	真性半導体、不純物半導体の成り 立ちを理解できない。			
評価項目	7		p n 接合の成り立ちと性質を適切 に理解できる。	できる。	立ちと性質を理解	p n 接合の成り立ちと性質を理解 できない。			
評価項目	8		トランジスタの動作原理が適切に 理解できる。	トランジスタの きる。	動作原理が理解で	トランジスタの動作原理が理解できない。			
評価項目	9		固体の光吸収の仕組みが適切に理 解できる。	固体の光吸収の(る。	仕組みが理解でき	固体の光吸収の仕組みが理解でき ない。			
学習・教	到達目標功 育到達度目標 (2)(d)(1) J 去等	票 A-6							
概要		して物質 な構造と 無いと言 ためにも	学子、イオンと言った粒子が集まって物質特有の構造が形成され、そこでの粒子の微視的な運動の集積結果とり様々な性質が形作られています。電子物性は電気材料のマクロ的性質を原子、電子、イオンなどのミクロ的運動状態から理解しようとする学問です。 理解にとどまるものではありません。現代生活においては人工的に製作された材料を利用していないものはっても良い状態です。今後の科学技術の発展のためには新しい機能を持った新材料の開発が不可欠です。その電子物性の理解が必要であり、また近年著しく変わりつつある電子装置や電子素子を理解する上でも欠かすこないものです。材料の性質をミクロな粒子の振る舞いから説明するための物理的イメージを描けるようになった。						
	め方・方法	教員単独	· よる講義						
注意点		定期テス 授業計画	題を出しレポートの提出を求めます。 (期末試験)はペーパー試験で実施します。 , 学生の理解度に応じて変更する場合がある。 書籍は, 授業中に適宜紹介する。						
	属性・履修 ティブラーニ		} □ ICT 利用	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	.	□ 実務経験のある教員による授業			
<u></u>	<u>・ </u>	<i>-//</i>		」点 这附汉未对此	r.				
授業計画	 画								
		週	授業内容		週ごとの到達目標				
前期					電子物性の舞台である結晶の周期構造と対称性につい				
		1週	結晶構造		て説明できる。				
		2週	格子振動		結晶中の原子・分子の振動と音波の伝播特性について 説明できる。 格子振動の量子フォノンについての定性的な説明でき る。				
	1stQ	3週	固体の熱的性質		固体の比熱についての格子振動による説明ができる。 固体の熱伝導についての格子振動による説明ができる。 。				
		4週	古典的電子伝導モデル		電界中の電子運動からドリフト速度,緩和時間,移動度 を導出できる。				
		5週	金属の自由電子モデル		金属の自由電子モデルにより量子論的に電子状態を説明できる。				
		6週	固体のエネルギーバンド構造		クローニッヒ・ペニーの井戸形ポテンシャルモデルを 用い量子論による固体中の電子状態を説明できる。				
	_1		1		1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	NELLINE WE CHAILCE 90			

		,⊞		田井石	Nエ ラ リギ	でへ、L'' + 井\牛		固体中の電子に適用	 用されるフ	 フェルミ分布隊	数、状態密	
		7週		固体のエネルキ		ーハント構造 		度関数について説明できる。				
		8週		半導体	<u> </u>	半導体におけるキャリア分を			īについて説明できる。			
		9週	不純					不純物半導体のキャリアと電気伝導について説明でき				
		10ì	固	p n 接合		p n 接合のエネルギーバント			、構造を説明できる。			
		11ì	周	p n 接合の動作特		生 p n接合の電圧・電流。			電流,電圧	電圧・容量特性を説明できる		
2	ndQ	ndQ <u>12</u> 3		接合型	型トランジス ?	タ 接合型トランジスタの動作を				ヹ説明できる。		
		13週 電		電界効果トランジスタ			電界効果トランジスタの動作を説明できる。					
		14週 🛭		固体の光学的性質			半導体の光物性について説明できる。					
		15ì	固	期末ラ	テスト			第6回~第14回の内容に関する試験。				
		16週 其		期末テストの解答、アンケート テストの回答、授業アン				業アンケー	テートの実施。			
モデルコアカリキュラムの学習内容と到達目標												
分類			分野		学習内容	学習内容の到達目標	<u> </u>			到達レベル	授業週	
	分野別 <i>の</i> 専 門工学		電気・電子 系分野			電子の電荷量や質量などの基本性質を説明できる。			4			
						エレクトロンボルトの定義を説明し、単位換算等の計算ができる。				4		
						原子の構造を説明できる。			4			
					電子工学	パウリの排他律を理解し、原子の電子配置を説明できる。				4		
						結晶、エネルギーバンドの形成、フェルミ・ディラック分布を理解し、金属と絶縁体のエネルギーバンド図を説明できる。				4		
専門的能力				電子		金属の電気的性質を説明し、移動度や導電率の計算ができる。				4		
						真性半導体と不純物半導体を説明できる。				4		
						半導体のエネルギーバンド図を説明できる。				4		
						pn接合の構造を理解し、エネルギーバンド図を用いてpn接合の電流一電圧特性を説明できる。				4		
						バイポーラトランジスタの構造を理解し、エネルギーバンド図を 用いてバイポーラトランジスタの静特性を説明できる。			ンド図を	4		
						電界効果トランジスタの構造と動作を説明できる。				4		
評価割合												
試験発表				 表	相互評価	態度	ポートフォリオ	レポート	合計			
総合評価割合	` 60	60		0		0	0	0	40	100)	
基礎的能力	60	60		0		0 0		0	40	100)	
専門的能力	0	0		0		0	0	0	0	0		
分野横断的能	七力 0	0		0		0	0	0	0	0		