福井	‡工業高	等専門学	校 開講年月	度 令和02年度	(2020年度)	授業科目	現代数学論	<u> </u>	
科目基础	楚情報		<u> </u>	-					
科目番号		0017			科目区分	専門 / 必	専門 / 必修		
授業形態 講義					単位の種別と単位	位数 学修単位	: 2		
		ノテム工学専攻	テム工学専攻		対象学年 専1				
開設期後期					週時間数 2				
教科書/教材 使用しない			ない		•	•			
担当教員		山田 割	5也						
到達目標									
(1)フーリ (2)解の ^ー	リエ解析を −意性の概	を用いて、熱 既念および最	方程式の解を構成で 大値原理の意味を理	ごきる。 里解する。					
ルーブ!	ノック								
			理想的な到達	レベルの目安	標準的な到達レ	標準的な到達レベルの目安未到達レベルの目安			
評価項目1				fを用いて、熱方程3 5見ないで構成できる	z ノーリエ胜何で)	フーリエ解析を用いて、熱方程式 の解を構成できる			
評価項目	2			解の一意性の概念および最大値原 理の意味を十分に理解している				の概念および最大値原 理解していない	
学科の発	到達目	票項目との	関係						
JABEE JE									
教育方法	 去等								
概要		様々な	は現象の数理モデル	として偏微分方程式 木科目では 偏微分	はしばしば登場する方程式の代表例であ	。 したがって、I ろ1次元の執方程:	ニ学分野におい ^っ	ても偏微分方程式の解	
受業の進む	め方・方							業では定理の証明なと	
 注意点		100点	満点で60点以上を		算出方法は以下のと				
₩₩₽₩			100)ー 武勝の分号点で	<u> </u>	10)				
授業計画	<u> </u>	\m	松 类中容						
		週	授業内容	が劫士和士の道川		週ごとの到達目標			
後期		1週		び熱方程式の導出		熱方程式の導出方法を理解する			
		2週		リクレ境界値問題		解を構成することができる			
		3週		リクレ境界値問題		解を構成することができる			
	3rdQ	4週		リクレ境界値問題		解の一意性と最大値原理の関係を理解する			
		5週		リクレ境界値問題		解の一意性と最大値原理の関係を理解する			
		6週		リクレ境界値問題		時刻無限大での解の振る舞いを理解する 解を構成することができる			
		7週	熱方程式のノイマン境界値問題 熱方程式のノイマン境界値問題			解を構成することができる			
		8週				解を構成することができる			
		9週		マン境界値問題		解の一意性と最大値原理の関係を理解する 時刻無限大での解の振る舞いを理解する			
		10週	熱方程式のノイマン境界値問題 熱方程式の初期値問題			時刻無限大での解の振る舞いを理解する 解を構成することができる			
		11週				解を構成することができる			
	4thQ	12週	熱方程式の初期			解を構成することができる 解の一意性と最大値原理の関係を理解する			
		13週	熱方程式の初期						
		14週				時刻無限大での解の振る舞いを理解する これまでの講義内容が理解されているかを問う			
		15週	男木試験 学習のまとめ		これまでの講義内容が理解されているかを向うこれまでの講義内容を振り返る				
				17年口冊		これよこの神我	当台で振り巡る		
	コンカ!		の学習内容と至				1	1)±1 -211 1=2445=	
分類 <i>(</i>)	•	分野	学習内容	学習内容の到達	目標		到	達レベル 授業週	
評価割合						Т.			
		試験	発表	相互評価	態度	ポートフォリオ		合計	
		90	0	0	0	0	10	100	
	基礎的能力 9		0	0	0	0	10	100	
	カ	90	U			10	+	100	
		0	0	0	0	0	0	0	