沼津	 ≹工業高等	専門学校	開講年度 令和02年度 (2	2020年度)	授業科目		
		, (31 3 3)			7.2.2.1.1.1.1		
<u>17 口坐。</u> 科目番号		2020-3	13	科目区分	専門 / 必修	;	
17日日7 授業形態		授業	13	単位の種別と単位			
以来ル芯 開設学科				対象学年	3		
開設期		通年	·	週時間数	2		
<u> 教科書/教</u>	☆ オオ		N 柴田 尚志 著 コロナ社、ドリルと	1 1 1 1.		· 電気書院	
担当教員		大沼巧	7 NA 1-30- 1 20 Et 1 277 C	<u> </u>			
		VAL - 3					
(2) 電気[(3) 直流[(4) 共振[(5) 交流[回路に関する 回路、交流回 回路・結合回 電力と力率(る基本的な法 回路の問題を 回路の説明ま	理解し、数学を用いて表現できる。 関を理解し、それを用いて回路方程式 解き、その解の意味が説明できる。 なび計算ができる。 彼別なび計算ができる。	が立てられる。			
ルーブリ	リック			1		T	
			理想的な到達レベルの目安	標準的な到達レベルの目安		未到達レベルの目安	
評価項目	1		□電気回路の基本素子の特性を理解し、数学を用いて表現できる。	□電気回路の基本 解できる。	素子の特性を理	□電気回路の基本素子の特性を理解できない。	
評価項目	2		□電気回路に関する基本的な法則 を理解し、それを用いて回路方程 式が立てられる。	□電気回路に関する基本的な法則 を理解できる。		□電気回路に関する基本的な法則 を理解できない。	
評価項目	3		□直流回路、交流回路の問題を解き、その解の意味が説明できる。	□直流回路、交流 ける。		□直流回路、交流回路の問題を解 けない。	
評価項目4			□共振回路・結合回路の説明およ び計算ができる。	□共振回路・結合回路について説 明ができる。		□共振回路・結合回路について説明ができない。	
評価項目5			□交流電力と力率についての説明 および計算ができる。	□交流電力と力率について説明が できる。		□交流電力と力率について説明が できない。	
		頁目との関					
【本校学	習・教育目	標(本科のる	5)] 3				
は容易で 分積分に 概要 用いるこ とれるこ と利用する いている		は容易で 分積分に 用いる。 利用なる。 いている。	流の関係をよく理解することである。直流回路においては、電圧と電流の関係はオームの法則しかないので理解であるが、電圧・電流が時間的に変化する交流回路においては、コイルやコンデンサの電圧と電流の関係を、微によって表すことが必要となる。また、正弦波交流回路では、電気回路の解析に、複素数やベクトルの考え方をことで、複雑な計算を容易にしている。さらに大規模な回路網の解析においては、行列・行列式が強力なツールこのように、回路の理論解析を行う上で、数学表現に基づく物理現象の理解が非常に重要であり、このときに乙様々な解析手法は、電気回路のみならず制御、力学、通信工学などにも通ずる、基本的な工学の考え方に基づる。本授業では、数学を応用して、電気回路の基礎から交流理論、回路計算手法、周波数解析などを学ぶと同時、の例題や問題を解くことによって、問題解決のための工学的なスキルを養う。				
受業の進	め方・方法	授業のうる。	マに沿った解説を行い、関連する演 定期試験、課題(反転授業を含む)に。	習問題を解く。授業	の一部に反転授業	を取り入れ、順次発表の機会を作	
 注意点			たが記録で、研究では、 いては、評価割合に従って行います。				
授業計	面	100000000					
~~+11	1	週	授業内容	41	 週ごとの到達目標		
		1週	ガイダンス・電気回路概説		基本的な電気回路の用語を挙げることができる		
		2週	基本回路素子における電圧と電流の関	R,L,Cの電圧と電流		記の基本関係式が説明できる	
前期		3週	基本回路素子の直列接続と並列接続			最続した場合の合成値の計算ができ	
		4週			直流回路の基本法則に基づく回路計算ができる		
	1stQ	5週	直流回路2		直流回路の基本法則に基づく回路計算ができる		
		6週	正弦波交流		正弦波の基本諸特性を図を用いて説明できる		
		7週	演習		基本回路の計算ができる		
		8週	基本回路素子における正弦波交流電圧	· Lebanes R	R,L,Cの各素子を正弦波交流電源に接続した場合にる電流を求めることができる		
		9週	交流回路の計算	1.	複素ベクトルを複素平面上に表現できる		
		10週	複素数の演算	i i	複素数の四則演算ができる		
		11週	フェーザ表示		正弦波交流のフェーザ表示を説明できる		
	2 10	12週	R,L,Cの直列回路と並列回路の計算	祖	複素数を用いた直列回路・並列回路の計算ができる		
	2ndQ	13週	フェーザ表示と瞬時値の変換		フェーザ表示と瞬時値の変換ができる		
		14週	交流回路の電力		交流電力と力率について説明・計算ができる		
		15週	演習			て回路計算ができる	
		16调					

16週

1週 2週

3週

4週

5週

6週 7週

8週

3rdQ

後期

合成インピーダンス, 合成アドミタンス

分圧と分流

閉路方程式

節点方程式

閉路の基本系

演習

回路理論における諸定理

グラフ理論による回路網の解析

複数の交流素子が接続された回路の計算ができる

回路網のグラフから木と補木を定めることができる

分圧と分流を使った回路計算ができる

様々な定理を用いた回路計算ができる

行列を使って閉路方程式を立てられる

行列を使って節点方程式を立てられる

基本閉路を定めることができる 交流回路の基本計算ができる

	9	9週	周波数特性		電源の周波数が変化した場合のインピーダンスや電 などの変化を調べることができる			ンスや電流
4		10週	共振回路				枚と共振の鋭さを求めること	
	II	11週	ベクトル軌跡		Procedure		ベクトル軌跡	を求めるこ
	lthQ	12週	相互誘導現	象		相互誘導現象を説明できる		
		13週	相互誘導回	目互誘導回路		相互誘導回路の計算ができる		
		14週	変圧器		変.	変圧器について説明できる		
	F	15週	演習	演習		後期の内容について回路計算ができる		
		16週						
モデルコス	アカリキ	ュラムの	学習内容	と到達目	標			
分類	1	分野	学習	内容学	習内容の到達目標		到達レベル	授業週
				複	複素数の相等を理解し、その加減乗除の計算ができる。		3	前10,後9
				簡.	簡単な連立方程式を解くことができる。		3	後3,後4,後
				指			3	前9
					角を弧度法で表現することができる。		3	前5
					可以数の性質を理解し、グラフをかく	ことができる。	3	前5.後9
					加法定理および加法定理から導出される公式等を使うことができ		3	
					加法に達むよび加法に達から等山でれる女式寺を使りことができる。		3	前5
					三角関数を含む簡単な方程式を解くことができる。		3	前5
					角比を理解し、簡単な場合について、	三角比を求めることがで	3	前5
				<u></u>	<u>。</u> 9角の三角関数の値を求めることがで	· ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	3	前5
					g用の三角関数の値を求めることがで 単な場合について、円の方程式を求め		3	後11
					Pな場合について、日の月柱氏で求め フトルの定義を理解し、ベクトルの基			
				数	数倍)ができ、大きさを求めることができる。 平面および空間ベクトルの成分表示ができ、成分表示を利用して		3	前9,後11
					一番的ない主間ペンパンの成力表示ができ、成力表示を利用して 簡単な計算ができる。		3	前9,後11
					平面および空間ベクトルの内積を求めることができる。		3	前9,後11
	数学	数学	数学	行	行列の定義を理解し、行列の和・差・スカラーとの積、行列の積 を求めることができる。		3	後4,後5
				逆	逆行列の定義を理解し、2次の正方行列の逆行列を求めることが できる。		3	後4,後5
基礎的能力				行	でして、 行列式の定義および性質を理解し、基本的な行列式の値を求める ことができる。		3	後4,後5
				微	微分係数の意味や、導関数の定義を理解し、導関数を求めることができる。		3	前2,前8
				-	積・商の導関数の公式を用いて、導関数を求めることがができる。		3	前2,前8
				<u>。</u> 合	 戊関数の導関数を求めることができる	00	3	前2,前8
					角関数・指数関数・対数関数の導関数		3	前2,前8
					極値を利用して、関数の最大値・最小値を求めることができる。		3	前4
					不定積分の定義を理解し、簡単な不定積分を求めることができる		3	前8
				。 里 .	みきハナトが加入き入去中ゥマー 不完	*注ハか字注ハたポルファ	3	HIO
					換積分および部分積分を用いて、不定 ができる。	傾力(7) 上傾力を氷めるこ	3	前8
					改関数・無理関数・三角関数・指数関 E積分を求めることができる。	数・対数関数の不定積分	3	前8
					オイラーの公式を用いて、複素数変数の指数関数の簡単な計算ができる。		3	前9
			波動	共	、共鳴現象について具体例を挙げる	ことができる。	3	
	自然科学			1	- ムの法則から、電圧、電流、抵抗に	関する計算ができる。	3	前3,前4,後
		物理	電気		抵抗を直列接続、及び並列接続したときの合成抵抗の値を求める ことができる。		3	前3,前4
					_/// c a る。 1 ール熱や電力を求めることができる) a	3	前4
		○専 電気・電子			エール熱や電力を求めることができる。 苛と電流、電圧を説明できる。	, o	3	前1
					電何と電流、電圧を説明できる。 オームの法則を説明し、電流・電圧・抵抗の計算ができる。			前4,後4,後
				7	-ム少法則を説明し、電流・電圧・担 	加少計昇かじさる。	3	5,後6,後7
				+,	レヒホッフの法則を用いて、直流回路	の計算ができる。	3	前4,後6,後 7
	分野別の導		雷子	る	一 合成抵抗や分圧・分流の考え方を用いて、直流回路の計算ができ る。		3	, 前4
専門的能力	円工学	亨 竜丸・ 系分野					3	前4
					り量と電力を説明し、これらを計算で		3	前4
					玄波交流の特徴を説明し、周波数や位		3	前5,後9
					自値と実効値を説明し、これらを計算		3	前5
					玄波交流のフェーザ表示を説明できる		3	前11,後3
		1					3	前2,後3

		瞬時	値を用いて、交流回路の計算	ができる。	3	前13,後3
		フェーザ表示を用いて、交流回路の計算ができる。			3	前12,後 3,後9,後 10,後11
				インピーダンスとアドミタンスを説明し、これらを計算できる。		
キルヒホッフの法則を用い			ヒホッフの法則を用いて、交流	流回路の計算ができる。	3	前12,後 3,後4,後 5,後6,後7
	合成インピーダンスや分圧・分流の考え方を用いて、交流回 計算ができる。			の考え方を用いて、交流回路の	^D 3	後1,後2,後 3
	直列共振回路と並列共振回路の計算ができる。				4	後9,後10
	相互誘導を説明し、相互誘導回路の計算ができる。				4	後12,後13
	理想変成器を説明できる。				4	後14
	交流電力と力率を説明し、これらを計算できる。				4	前14
	重ねの理を用い			を用いて、回路の計算ができる。		
	l li			網目電流法を用いて回路の計算ができる。		
		節点	市点電位法を用いて回路の計算ができる。			後5,後6
		テブ	ナンの定理を回路の計算に用い	いることができる。	3	前4,後3
評価割合						
試験			課題		合計	
総合評価割合	50		50	0	100	
基礎的能力	0		0	0	0	
専門的能力	50		50	0 100		
分野横断的能力	0		0	0 0		· ·