舞鶴工業高等専門学校		開講年度	平成28年度 (2	2016年度)	授業科目	熱工学		
科目基礎情報								
科目番号	0056			科目区分	専門/選	択		
授業形態	授業			単位の種別と単位数 履修り		修 単位: 1		
開設学科	機械工学科			対象学年	5	5		
開設期	前期			週時間数	2	2		
教科書/教材	教科書:小山 敏行著 「例題で学ぶ伝熱工学」(森北出版)/教材:適宜プリントを配布/参考書:例えば J.P.ホールマン著 「伝熱工学(上)(下)」 (ブレイン図書出版)							
担当教員	豊田 香							

到達目標

- ①伝熱の基本形態を理解し、各形態における伝熱機構を説明できる。
 ②フーリエの法則および熱伝導率を説明できる。
 ③平板および多層平板の定常熱伝導について、熱流束、温度分布、熱抵抗を計算できる。
 ④対流を伴う平板の定常熱伝導について、熱流束、温度分布、熱通過率を計算できる。
 ⑤ニュートンの冷却法則および熱伝達率を説明できる。
 ⑥自然対流と強制対流、層流と乱流、温度境界層と速度境界層、局所熱伝達率と平均熱伝達率を説明できる。
 ⑥自然対流と強制対流、層流と乱流、温度境界層と速度境界層、局所熱伝達率と平均熱伝達率を説明できる。
 ②平板に沿う流れ、円管内の流れ、円管群周りの流れなどについて、熱伝達関係式を用いることができる。
 ⑧黒体の定義を説明できる。
 ⑨ブランクの法則、ステファン・ボルツマンの法則、ウィーンの変位則を説明できる。
 ⑩単色ふく射率および全ふく射率を説明できる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	伝熱の基本形態を本質から十分に 理解し,各形態における伝熱機構 を説明できる。	伝熱の基本形態を理解し,各形態 における伝熱機構を説明できる。	伝熱の基本形態を理解できない、 また各形態における伝熱機構を説 明できない。
評価項目2	フーリエの法則および熱伝導率を 十分に説明できる。	フーリエの法則および熱伝導率を 説明できる。	フーリエの法則および熱伝導率を 説明できない。
評価項目3	平板および多層平板の定常熱伝導 について,熱流束、温度分布、熱 抵抗を十分に計算できる。	平板および多層平板の定常熱伝導 について,熱流束、温度分布、熱 抵抗を計算できる。	平板および多層平板の定常熱伝導 について,熱流束、温度分布、熱 抵抗を計算できない。
評価項目4	対流を伴う平板の定常熱伝導について,熱流束、温度分布、熱通過率を十分に計算できる。	対流を伴う平板の定常熱伝導について, 熱流束、温度分布、熱通過率を計算できる。	対流を伴う平板の定常熱伝導について, 熱流束、温度分布、熱通過率を計算できない。
評価項目5	ニュートンの冷却法則および熱伝 達率を十分に説明できる。	ニュートンの冷却法則および熱伝 達率を説明できる。	ニュートンの冷却法則および熱伝 達率を説明できない。
評価項目6	自然対流と強制対流,層流と乱流 ,温度境界層と速度境界層,局所 熱伝達率と平均熱伝達率を十分に 説明できる。	自然対流と強制対流,層流と乱流,温度境界層と速度境界層,局所熱伝達率と平均熱伝達率を説明できる。	自然対流と強制対流,層流と乱流 ,温度境界層と速度境界層,局所 熱伝達率と平均熱伝達率を説明で きない。
評価項目7	平板に沿う流れ,円管内の流れ ,円管群周りの流れなどについて ,熱伝達関係式を十分に用いることができる。	平板に沿う流れ,円管内の流れ ,円管群周りの流れなどについて ,熱伝達関係式を用いることがで きる。	平板に沿う流れ,円管内の流れ ,円管群周りの流れなどについて ,熱伝達関係式を用いることがで きない。
評価項目8	黒体の定義を十分に説明できる。	黒体の定義を説明できる。	黒体の定義を説明できない。
評価項目9	ウィーンの変位則を十分に説明できる。	プランクの法則, ステファン・ボ ルツマンの法則, ウィーンの変位 則を説明できる。	プランクの法則, ステファン・ボ ルツマンの法則, ウィーンの変位 則を説明できない。
評価項目10	単色ふく射率および全ふく射率を 十分に説明できる。	単色ふく射率および全ふく射率を 説明できる。	単色ふく射率および全ふく射率を 説明できない。

学科の到達目標項目との関係

(A)

教育方法等

授業の進め方・方法	講義を中心に授業を進め説明する。理解を深めるため,適宣演習問題も解答する。小テストを課することもあるので ,電卓は必ず持参すること。
	毎授業には電卓を持参すること。 成績の評価方法は年2回の試験の平均値で定期試験結果(60%),演習,小テストおよび必要に応じて課すレポート課題 に対する解答の内容の評価(40%)の合計をもって総合成績とする。 別途中海に其づき、数に道、数に違うない。日本の別途中を記価其準とする

注意点

到達目標に基づき、熱伝導、熱伝達、ふく射など各項目の到達度を評価基準とする。 【学生へのメッセージ】 日常生活で出会う伝熱現象に興味を持ち、学習した事項とどのように関連するかを常に考えて欲しい。 流体の力学とも密接に関係しているので、関連する式を理解しておくことが重要です。

教員名 豊田 香研究室 A棟3階(A-313) 内線電話 8936

e-mail: toyoda@maizuru-ct.ac.jp

授業計画

汉未引巴							
		週	授業内容	週ごとの到達目標			
前期 1stQ		1週	シラバスの説明,伝熱の基本形態,熱伝導	①伝熱の基本形態を理解し,各形態における伝熱機構 を説明できる。 ②フーリエの法則および熱伝導率を説明できる。			
	1stQ	2週	熱伝導	③平板および多層平板の定常熱伝導について, 熱流束 、温度分布、熱抵抗を計算できる。			
		3週	熱伝導	②フーリエの法則および熱伝導率を説明できる。 ③平板および多層平板の定常熱伝導について,熱流束 、温度分布、熱抵抗を計算できる。			

			1				a - 1 > a · a · a		- フ ご * * * * * * * * * * * * * * * * * * 			
							⑤ニュートンの冷却法則および熱伝達率を説明できる 。					
		4週	対流熱	熱伝達	⑥自然対流と強制対流,層流と乱流,温度境界層と速度境界層,局所熱伝達率と平均熱伝達率を説明できる							
					٥							
		5週	対流熱	対流熱伝達			⑥自然対流と強制対流,層流と乱流,温度境界層と速度境界層,局所熱伝達率と平均熱伝達率を説明できる。					
		6週	対流熱	熱伝達			⑦平板に沿う流れ,円管内の流れ,円管群周りの流れ などについて,熱伝達関係式を用いることができる。))流れ きる。	
7週			演習									
8週			前期	中間試験								
		9週 対		対流熱伝達			⑦平板に沿う流れ,円管内の流れ,円管群周りの流れ などについて,熱伝達関係式を用いることができる。					
		10週	対流熱	対流熱伝達			⑥自然対流と強制対流,層流と乱流,温度境界層と速度境界層,局所熱伝達率と平均熱伝達率を説明できる					
		11週	対流熱	熱伝達	云達			④対流を伴う平板の定常熱伝導について,熱流束、温度分布、熱通過率を計算できる。				
2	ndQ	12週	演習									
			ふくぼ	村	⑧黒体の定義を説明できる。⑨プランクの法則,ステファ,ウィーンの変位則を説明で			ァン・ボルツマンの法則 ごきる。				
		14週		ふく射			⑩単色ふく射率および全ふく射率を説明できる。					
		15週	演習									
		16週										
	アカリキ	ユラムの	の学習	内容と到達					Г			
分類	1	分野			学習内容の到達目標		到達レベル 授業週					
					伝熱の基本形態を理解し、各形態における伝熱機構を説明できる 。 前1							
					フーリエの法則および熱伝導率を説明できる。			3	前1			
					平板および多層平板の定常熱伝導について、熱流束、温度分布、 熱抵抗を計算できる。			3	前2,前	前3		
					対流を伴う平板の定常熱伝導について、熱流束、温度分布、熱通 過率を計算できる。			3	前4,前	前11		
専門的能力	分野別の	分野別の専 門工学 機械系分		烈流体	ニュートンの冷却法則および熱伝達率を説明できる。			3	前5			
等广则能力	門工学				自然対流と強制対流、層流と乱流、温度境界層と速度境界層、局所熱伝達率と平均熱伝達率を説明できる。			3	前4,前	前10		
					平板に沿う流れ、円管内の流れ、円管群周りの流れなどについて 、熱伝達関係式を用いることができる。			3	前6			
					黒体の定義を説明できる。			3	前13			
					プランクの法則、ステファン・ボルツマンの法則、ウィーンの変 位則を説明できる。			3 前1				
					単色ふく射率および	び全ふく射率を説	明できる。		3	前13,	,前15	
評価割合												
試験			表	相互評価	態度	ポートフォリオ	その他	合計				
	総合評価割合 60		0		0	0	40	0	100			
基礎的能力 0			0		0	0	0	0	0			
専門的能力 60			0		0	0	0	0	0			
分野横断的能力 0			0		Įυ	Į U	Įυ	Į U		,		