舞鶴工業高等専門学校		開講年度	平成29年度 (2	017年度)	授業科目	入門機械電気電子情報工学		
科目基礎情報								
科目番号	0125			科目区分	専門 / 必	必修		
授業形態	授業			単位の種別と単位数	カ 履修単位	ī: 1		
開設学科	機械工学科			対象学年	3	3		
開設期	後期			週時間数	2	2		
参考書: Massimo Banzi著「Arduinoをはじめよう」(オライリージャパン),参考書: 木村昇著「はじめての3次元 教科書/教材 CAD SolidWorksの基礎」(協立出版),参考書: 栗山晃治・新間寛之著「図解SolidWorks実習(第2版)」(森北出版))								
担当教員	須田 敦							
到達目標								

- 1 文書,表計算を活用したプレゼンテーションができる。
 2 知的財産について簡単に説明できる。
 3 CADシステムの役割と構成を説明できる。
 4 CADシステムの基本機能を理解し、利用できる。
 5 3次元プリンタについて簡単に説明できる。
 6 マイコンを用いた入出力処理ができる。
 7 アイデアに基づきものづくりができる。
 8 報告書に基づいた成果発表ができる。

ルーブリック

理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
文書,表計算を活用したプレゼン テーションが十分にできる。	文書,表計算を活用したプレゼン テーションができる。	文書,表計算を活用したプレゼン テーションができない。
知的財産について十分に説明できる。	知的財産について簡単に説明でき る。	知的財産について簡単に説明できない。
CADシステムの役割と構成を十分 に説明できる。	CADシステムの役割と構成を説明 できる。	CADシステムの役割と構成を説明 できない。
CADシステムの基本機能を十分に 理解し,十分に利用できる。	CADシステムの基本機能を理解し ,利用できる。	CADシステムの基本機能を理解できず、利用できない。
3次元プリンタについて十分にに説明できる。	3次元プリンタについて簡単に説明できる。	3次元プリンタについて簡単に説明できない。
マイコンを用いた入出力処理が十分にできる。	マイコンを用いた入出力処理ができる。	マイコンを用いた入出力処理ができない。
アイデアに基づきものづくりが十 分にできる。	アイデアに基づきものづくりがで きる。	アイデアに基づきものづくりがで きない。
報告書に基づいた成果発表が十分 にできる。	報告書に基づいた成果発表ができ る。	報告書に基づいた成果発表ができ ない。
	文書、表計算を活用したプレゼンテーションが十分にできる。 知的財産について十分に説明できる。 CADシステムの役割と構成を十分に説明できる。 CADシステムの基本機能を十分に理解し、十分に利用できる。 3次元プリンタについて十分にに説明できる。 マイコンを用いた入出力処理が十分にできる。 アイデアに基づきものづくりが十分にできる。 報告書に基づいた成果発表が十分	文書,表計算を活用したプレゼン テーションが十分にできる。

学科の到達目標項目との関係

教育方法等

概要	本授業では,特許情報の活用,3次元CADの基礎,マイコンを利用した入出力処理について学習し,コンピュータを技術の実践に活用し,メカトロニクス技術の基礎技術を体得する。
授業の進め方・方法	講義中心の授業を行うが,随時実習を取り入れる。今後のメカトロニクスの基礎となる科目なので,授業をしっかり聞き,予習・復習するなどして日々の学習を積み重ねて欲しい。
注意点	成績の評価方法は、中間・期末の試験の平均値(50%)と、演習課題などの内容の評価(50%)を総合して成績とする。到達目標の到達度を基準として成績を評価する。 http://moodle.maizuru-ct.ac.jp/moodle/ で授業内容に関する情報を提供研究室 S棟 1階(S-102) 内線電話 8940 e-mail: a.sudaアットマークmaizuru-ct.ac.jp(「アットマーク」は@に変える)

授業計画

1又未 11	又未引回									
		週	授業内容	週ごとの到達目標						
後期		1週	シラバス内容の説明, Officeソフトの活用	1 文書,表計算を活用したプレゼンテーションができる。						
		2週	知的財産について,知財(特許)情報処理	2 知的財産について簡単に説明できる。						
		3週	知財情報処理, 地域の課題解決を目指す知財課題	1 文書,表計算を活用したプレゼンテーションができる。 2 知的財産について簡単に説明できる。						
	240	4週	3次元CADの基礎	③ CADシステムの役割と構成を説明できる。						
	3rdQ	5週	3次元CADの基礎	③ CADシステムの役割と構成を説明できる。 ④ CADシステムの基本機能を理解し,利用できる。						
		6週	3次元CADの基礎,3次元プリンタの基礎	④ CADシステムの基本機能を理解し,利用できる。5 3次元プリンタについて簡単に説明できる。						
		7週	地域の課題解決を目指す3次元CAD・3次元プリンタ課題	④ CADシステムの基本機能を理解し,利用できる。 5 3次元プリンタについて簡単に説明できる。						
		8週	後期中間試験							
		9週	テストの返却と解説,マイコンの説明, LEDの点滅	6 マイコンを用いた入出力処理ができる。						
		10週	LEDの明るさの制御	6 マイコンを用いた入出力処理ができる。						
		11週	センサを用いた測定	6 マイコンを用いた入出力処理ができる。						
	4+h0	12週	モータの回転制御	6 マイコンを用いた入出力処理ができる。						
	4thQ	13週	赤外線の活用	6 マイコンを用いた入出力処理ができる。						
		14週	地域の課題解決を目指す課題製作	7 アイデアに基づきものづくりができる。						
		15週	地域の課題解決を目指す課題発表会	8 報告書の基づいた成果発表ができる。						
		16週	後期期末試験							

モデルコアカリキュラムの学習内容と到達目標										
分類		分野	学習内容	学習内容の到達目標			到達レベル	授業週		
専門的能力	八田文	回の声			C A Dシステムの役割と構成を説明できる。				2	後4,後5
	分野別の専 門工学	機械系分野	野 製図	CADシステムの役割	2	後5,後6,後 7				
評価割合										
		試験発		発表	相互評価	態度	ポートフォリオ	その他	合語	i †
総合評価割合 5		50		0	0	0	50	0	10	0
基礎的能力 0		0		0	0	0	0	0 0		
専門的能力		50 0		0	0	0	50	0	10	0
分野横断的能力		0 0		0	0	0	0	0	0	