明石工業高等専門学校		開講年度	度 令和02年度 (2020年度) 哲		授業科目	サイエンスⅢ A		
科目基礎情報								
科目番号	0052			科目区分	一般 / 必	修		
授業形態	講義			単位の種別と単位数	複 履修単位	: 2		
開設学科	機械工学科			対象学年	3	3		
開設期	通年			週時間数	2	2		
教科書/教材 前期:「総合物理2」数研出版 「リードa 物理基礎・物理」数研出版 後期:中山正敏「基礎力学」裳華房								
旦当教員 小笠原 弘道,小野 慎司								
到達目標								
(1) コンデンサーと直流回路が理解できる。 (2) 交流回路と電磁波に関する計算問題を解くことができる。								

- |(2) 交流回路と電磁波に関する計算問題を解くことができる。 |(3) 微積分とベクトル算による取り扱いを含む,力学の基本法則に基づいた力と運動の取り扱いができる.

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	する応用的な計算問題を解くこと	コンデンサーと回路と電磁波に関する基本的な計算問題を解くことができる.	コンデンサーと回路と電磁波に関する計算問題を解くことができない.
		カ学の基本法則に基づいた力と運動の取り扱いができる.	力学の基本法則に基づいた力と運動の取り扱いができない.

学科の到達目標項目との関係

学習・教育到達度目標 (D) 学習・教育到達度目標 (F) 学習・教育到達度目標 (G)

教育方法等

概要	前期には主として電磁気に関する分野を学習する(担当:小野). 後期には微積分とベクトル算を用いた力学について学習する(担当:小笠原).
授業の進め方・方法	授業は講義形式で行い,その中で演習課題や小テストも課す.
注意点	毎回の授業に対して予習・復習および問題演習を行うこと. 任意提出課題などにより加点を行うことがあり,受講態度などにより減点を行うことがある. 合格の対象としない欠席条件(割合) 1/3以上の欠課

授業計画

週		週	授業内容	週ごとの到達目標
		1週	コンデンサーの電気容量とコンデンサーと誘電体 (p129-p135)	問題集332,334,335が解説できる.
		2週	コンデンサーの接続とコンデンサーに蓄えられるエネルギー(p136-p140)	問題集336,337,342が解説できる.
		3週	オームの法則(p142-p147)	問題集357(1)~(4)が解説できる.
	1stQ	4週	ジュール熱と電力量と電力と直流回路(p148-p153)	問題集351,354,356が解説できる.
	ISIQ	5週	キルヒホッフの法則と電池とホイートストンブリッジ (p156-p159)	問題集360,363,365が解説できる.
		6週	起電力の測定と非直線抵抗とコンデンサーを含む直流 回路(p160-p163)	問題集367,368,369が解説できる.
前期		7週	半導体とトランジスター(p164-p167)	問題集370,371が解説できる.
		8週	中間試験	8割を正答できる.
		9週	電流と磁場(p172-p179)	問題集377,379,380が解説できる.
		10週	電流が磁場から受ける力(p180-p190)	問題集381,384,385が解説できる.
		11週	電磁誘導とローレンツカ(p192-p199)	問題集393,395,398が解説できる.
	2ndQ	12週	渦電流と自己誘導と相互誘導(p200-p205)	問題集399,400,402が解説できる.
	ZnaQ	13週	交流の発生(p206-p210)	問題集409,410,412が解説できる.
		14週	交流回路(p211-p224)	問題集413,414,415が解説できる.
		15週	共振と電磁波(p225-p232)	問題集416,417,418が解説できる.
		16週	期末試験	8割を正答できる.
	3rdQ	1週	位置・速度・加速度	質点の運動をベクトルの微積分に基づいて記述できる
		2週	位置・速度・加速度	質点の運動をベクトルの微積分に基づいて記述できる
		3週	運動の法則	運動の法則について説明でき, それらを具体的な問題 に適用できる.
		4週	運動の法則	運動の法則について説明でき,それらを具体的な問題に適用できる.
後期		5週	仕事と力学的エネルギー	仕事と力学的エネルギーおよびその保存則について説 明でき,それらを具体的な問題に適用できる.
		6週	仕事と力学的エネルギー	仕事と力学的エネルギーおよびその保存則について説 明でき,それらを具体的な問題に適用できる.
		7週	仕事と力学的エネルギー	仕事と力学的エネルギーおよびその保存則について説 明でき,それらを具体的な問題に適用できる.
		8週	中間試験	
	4thQ	9週	重心に関する運動方程式と運動量保存則	質点系の重心に関する運動方程式と運動量保存則について説明でき,それらを具体的な問題に適用できる.
		10週	重心に関する運動方程式と運動量保存則	質点系の重心に関する運動方程式と運動量保存則について説明でき,それらを具体的な問題に適用できる.

		11週	回転の	の運動方程式	と角運動量保存則 角つ	運動量と回転の運動方程式 いて説明でき, それらを具	および角運動 体的な問題に	量保存則に 適用できる
		12週	回転の			角運動量と回転の運動方程式および角運動量保存則について説明でき,それらを具体的な問題に適用できる		
		13週	剛体の	の力学	ザイン		の運動につい 用できる.	て説明でき
		14週	剛体の	 D力学		点系の重要な例である剛体 それらを具体的な問題に適	の力学について説明でき	
		15週	剛体の	の力学	質	質点系の重要な例である剛体の力学について説明でき 、それらを具体的な問題に適用できる.		
		16週	期末記		,		<u>т Се Э.</u>	
モデルコ	アカリキ	ユラムの)学習	内容と到達	目標			
分類		分野		学習内容	学習内容の到達目標		到達レベル	授業週
					速度と加速度の概念を説明できる。		3	後1,後2
					平面内を移動する質点の運動を位置べく とができる。	クトルの変化として扱うこ	3	後1,後2
					物体の変位、速度、加速度を微分・積分とができる。	分を用いて相互に計算する	3	後1,後2
					平均の速度、平均の加速度を計算する。	ことができる。	3	後1,後2
					自由落下、及び鉛直投射した物体の座標ができる。		3	後3,後4
					水平投射、及び斜方投射した物体の座標 算ができる。	票、速度、時間に関する計	3	後3,後4
					類がくさる。 物体に作用する力を図示することができ	<u>+</u> ス	3	後3,後4
						<u>ල</u> නං	3	後3,後4
					力の合成と分解をすることができる。 重力、抗力、張力、圧力について説明で	できる	3	後3,後4
							3	後3,後4
					質点にはたらく力のつりあいの問題を		3	後3,後4
						<u> </u>		 '
					慣性の法則について説明できる。 作用と反作用の関係について、具体例を挙げて説明できる。		3	後3,後4
							後3,後4	
		運動方程式を用いた計算ができる。		実もナヤサナナナ 切切坊	3	後3,後4		
					簡単な運動について微分方程式の形で過 問題として解くことができる。	連動力程式を立 C 、 初期値 	3	後3,後4
					運動の法則について説明できる。	- 1-1	3	後3,後4
					静止摩擦力がはたらいている場合の力のつりあいについて説明できる。			後3,後4
					最大摩擦力に関する計算ができる。		3	後3,後4
					動摩擦力に関する計算ができる。		3	後3,後4
					仕事と仕事率に関する計算ができる。		3	後5,後6,後 7
基礎的能力	自然科学	物理		力学	物体の運動エネルギーに関する計算がで	できる。	3	後5,後6,後 7
					重力による位置エネルギーに関する計算	算ができる。	3	後5,後6,後 7
					弾性力による位置エネルギーに関する記	計算ができる。	3	後5,後6,後 7
					力学的エネルギー保存則を様々な物理		3	後5,後6,後 7
					物体の質量と速度から運動量を求めるこ		3	後9,後10
					運動量の差が力積に等しいことを利用しができる。	して、様々な物理量の計算	3	後9,後10
					運動量保存則を様々な物理量の計算に利	利用できる。	3	後9,後10
					周期、振動数など単振動を特徴づける。 。	諸量を求めることができる	3	後3,後4
					単振動における変位、速度、加速度、力	力の関係を説明できる。	3	後3,後4
					等速円運動をする物体の速度、角速度、 計算ができる。	、加速度、向心力に関する	3	後3,後4
					万有引力の法則から物体間にはたらく7	万有引力を求めることがで	3	後5,後6,後 7
					<u></u> 万有引力による位置エネルギーに関する	る計算ができる。	3	, 後5,後6,後 7
						.	3	/ 後11,後12
					角運動量を求めることができる。	-	3	後11,後12
					角運動量保存則について具体的な例を含める	 挙げて説明できる。	3	後11,後12
					剛体における力のつり合いに関する計算		3	後13,後 14,後15
					重心に関する計算ができる。		3	後13,後 14,後15
						性モーメントを求めること	3	後13,後 14,後15
					ができる。		<u> </u>	14,俊15

原子や分子の熱運動と絶対温度との関連について説明できる。 3 時間の推移とともに、熱の移動によって熱平衡状態に達すること 3 物体の熱容量と比熱を用いた計算ができる。 3 熱量の保存則を表す式を立て、熱容量や比熱を求めることができ 3 動摩擦力がする仕事は、一般に熱となることを説明できる。 3 ボイル・シャルルの法則や理想気体の状態方程式を用いて、気体 3 の圧力、温度、体積に関する計算ができる。 3 禁力学第一法則と定積変化・定圧変化・等温変化・断熱変化について説明できる。 1 エネルギーについて説明できる。 3 禁力学第一法則と定積変化・定圧変化・等温変化・断熱変化について説明できる。 3 禁力学第一法則と定積変化・定圧変化・等温変化・断熱変化について説明できる。 3 禁機関の熱効率に関する計算ができる。 3 対機関の熱効率に関する計算ができる。 3 対機関の熱効率に関する計算ができる。 3 がり、前1,前2,前3,前4,前5,前6,前7 電気 本の法則から、電圧、電流、抵抗に関する計算ができる。 3 がり、前1,前2,前3,前4,前5,前6,前7 運気 拡抗を直列接続、及び並列接続したときの合成抵抗の値を求めることができる。 3 がり、前1,前2,前3,前4,前5,前6,前7 評価割合 後の単の 協議 演習課題・小テスト 合計 (00 基礎的能力 60 40 100 基礎的能力 60 40 100 長間的能力 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					T DE SENTENCE			14.10.14
時間の推移とともに、熱の移動によって熱平衡状態に達すること 名					いて、回転の運動万程式を立	てて解くことか	3	後13,後 14,後15
を説明できる。				原子や分子の熱運動と絶対温度との関連について説明できる。		3		
熱量の保存則を表す式を立て、熱容量や比熱を求めることができる。 動摩擦力がする仕事は、一般に熱となることを説明できる。 3							3	
A				物体の熱容量と比熱	やを用いた計算ができる。		3	
対イル・シャルルの法則や理想気体の状態方程式を用いて、気体 3					「式を立て、熱容量や比熱を求	めることができ	3	
かける かけ				動摩擦力がする仕事	写は、一般に熱となることを説	明できる。	3	
熱力学第一法則と定積変化・定圧変化・等温変化・断熱変化につ 3			熱	ボイル・シャルルの圧力、温度、体積)法則や理想気体の状態方程式 責に関する計算ができる。	を用いて、気体	3	
いて説明できる。				気体の内部エネルキ	ドーについて説明できる。		3	
を挙げて説明できる。 不可逆変化について理解し、具体例を挙げることができる。 熱機関の熱効率に関する計算ができる。3オームの法則から、電圧、電流、抵抗に関する計算ができる。3抵抗を直列接続、及び並列接続したときの合成抵抗の値を求める。 ことができる。3新1,前2,前 3,前4,前 5,前6,前7ジュール熱や電力を求めることができる。3評価割合試験 総合評価割合演習課題・小テスト 						3		
熱機関の熱効率に関する計算ができる。3オームの法則から、電圧、電流、抵抗に関する計算ができる。3前1,前2,前 3,前4,前 5,前6,前7抵抗を直列接続、及び並列接続したときの合成抵抗の値を求める ことができる。3前1,前2,前 3,前4,前 5,前6,前7評価割合試験演習課題・小テスト合計総合評価割合6040100基礎的能力6040100専門的能力00						3		
オームの法則から、電圧、電流、抵抗に関する計算ができる。 3				不可逆変化について理解し、具体例を挙げることができる。		3		
オームの法則から、電圧、電流、抵抗に関する計算ができる。 3 3,前4,前5,前6,前7 抵抗を直列接続、及び並列接続したときの合成抵抗の値を求める 3 前1,前2,前3,前4,前5,前6,前7 前1,前2,前3,前4,前5,前6,前7 前1,前2,前3,前4,前5,前6,前7 前1,前2,前3,前4,前5,前6,前7 京価割合 試験 演習課題・小テスト 合計 総合評価割合 60 40 100 基礎的能力 60 40 100 専門的能力 0 0 0				熱機関の熱効率に関する計算ができる。		3		
電気 抵抗を直列接続、及び並列接続したときの合成抵抗の値を求める 3 前1,前2,前 3,前4,前 5,前6,前7 ジュール熱や電力を求めることができる。 3 前1,前2,前 3,前4,前 5,前6,前7 部1,前2,前 3,前4,前 5,前4,前 5,前6,前7 部1,前2,前 3,前4,前 5,前4,前 5,前				オームの法則から、電圧、電流、抵抗に関する計算ができる。			3	前1,前2,前 3,前4,前 5,前6,前7
評価割合 試験 演習課題・小テスト 合計 総合評価割合 60 40 100 基礎的能力 60 40 100 専門的能力 0 0 0			電気				3	前1,前2,前 3,前4,前
試験 演習課題・小テスト 合計 総合評価割合 60 40 100 基礎的能力 60 40 100 専門的能力 0 0 0				ジュール熱や電力を求めることができる。			3	3,前4,前
総合評価割合6040100基礎的能力6040100専門的能力000	評価割合							
基礎的能力 60 40 100 専門的能力 0 0 0		Ē	式験		演習課題・小テスト	合計		
専門的能力 0 0 0	総合評価割合	基礎的能力 60			40	100		
N. P. Shers	基礎的能力				40	100		
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	専門的能力			0 0				
C COURTINATION C	分野横断的能力 0)		0	0		