奈良工業高等専門学校		開講年度	令和02年度 (2	020年度)	授業科目	分子生物学	
科目基礎情報							
科目番号	0087			科目区分 専門 / 必		必修	
授業形態	講義			単位の種別と単位	数 学修単	学修単位: 2	
開設学科	物質化学工学	科		対象学年	5	5	
開設期	前期			週時間数	2		
教科書/教材	科書/教材 図解「分子生物学」 渡邊利雄著 ナツメ社 / 演習プリント						
担当教員	伊月 亜有子	<u> </u>					

到達目標

- 1. 遺伝子の本質がDNAであることを発見する過程について説明できる。
 2. DNAの立体構造や複製・修復のしくみについて説明できる。
 3. タンパク質合成過程(転写・翻訳・フォールディング・品質管理)について概要について説明できる。
 4. 転写・翻訳のしくみについて詳細に説明できる。
 5. 転写調節のしくみについて説明できる。
 6. 基本的な遺伝子操作について説明できる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
遺伝子の本質	遺伝子の本質がDNAであることを	遺伝子の本質がDNAであることを	遺伝子の本質がDNAであることを
	発見する過程について説明できる	発見する過程について概ね説明で	発見する過程についてほとんど説
	。	きる。	明できない。
DNAの構造・しくみ	DNAの立体構造や複製・修復のしくみについて説明できる。	DNAの立体構造や複製・修復のしくみについて概ね説明できる。	DNAの立体構造や複製・修復のしくみについてほとんど説明できない。
タンパク質合成過程	タンパク質合成過程(転写・翻訳	タンパク質合成過程(転写・翻訳	タンパク質合成過程(転写・翻訳
	・フォールディング・品質管理	・フォールディング・品質管理	・フォールディング・品質管理
)について概要について説明でき)について概要について概ね説明)について概要についてほとんど
	る。	できる。	説明できない。
転写・翻訳の詳細	転写・翻訳のしくみについて詳細	転写・翻訳のしくみについて概ね	転写・翻訳のしくみについてほと
	に説明できる。	説明できる。	んど説明できない。
転写調節	転写調節のしくみについて説明で	転写調節のしくみについて概ね説	転写調節のしくみについてほとん
	きる。	明できる。	ど説明できない。
遺伝子操作	基本的な遺伝子操作について説明	基本的な遺伝子操作について概ね	基本的な遺伝子操作についてほと
	できる。	説明できる。	んど説明できない。

学科の到達目標項目との関係

準学士課程(本科1~5年)学習教育目標 (2)

教育方法等

概要	遺伝子の本質をさぐるため、様々な実験を通じて、遺伝子の本質がDNAであることを学ぶ。次にDNAの構造・複製・修復について学び、タンパク質合成のメカニズムからその調節機構までを学ぶ。これらについてイメージが湧きやすいよう、適宜動画を用いながら解説する。最後に遺伝子操作のアウトラインについて学ぶ。				
授業の進め方・方法	授業中に教科書の内容を説明すると共に、演習課題に取り組む時間も設ける。				
注意点	事前学習 授業が始まるまでに生物基礎、生物化学I、生物化学II、生物化学III、応用微生物学の内容を復習しておく。				
	事後展開学習 授業内容を確認し、ノートに要点をまとめる。				
	関連科目 生物基礎、生物化学I、生物化学II、生物化学III、応用微生物学についての理解を必要とする。				
	学習指針 日々発展する分野であるため、最新の関連分野の話題にも興味を持つことが望まれる。				

学修単位の履修上の注意

自己学習 生物化学、応用微生物学などの知識を必要とするので、復習しておくこと。

評価基準 最新のニュースについて調べ、レポートにまとめる。

授業計画

		週	授業内容	週ごとの到達目標		
		1週	遺伝子研究の歴史	遺伝子研究の歴史について説明できる。		
		2週	DNA、RNAの構造	DNA、RNAの構造について説明できる。		
		3週	DNAと遺伝子	セントラルドグマについて説明できる。		
		4週	DNAの複製	DNAが複製される仕組みについて説明できる。		
	1stQ	5週	DNAの修復	DNAの修復機構について説明できる。		
前期 2ndQ		6週	タンパク質の合成(転写)	転写のしくみについて説明できる。		
		7週	タンパク質の合成(翻訳)	翻訳のしくみついて説明できる。		
		8週	前期中間試験	授業内容を理解し、試験問題に対して正しく解答することができる。		
	2ndQ	9週	転写調節 1	転写調節のしくみの概要について説明できる。		
		10週	転写調節 2	オペロンの制御のしくみなどについて説明できる。		
		11週	遺伝子組換え 1	遺伝子工学の基礎となるDNAの組換え実験について説明できる。		
		12週	遺伝子組換え2	DNAクローニングの原理について説明できる。		

		13週	有用:	タンパク質の	主産		遺伝子工学的手法を用いて実際に生産されている医薬 品などについて説明できる。			
			遺伝	子組換えの安全	全性		遺伝子組換えの安全性および生命倫理について説明できる。			
			まと	カ			これまで勉強したことについて総合的に説明できる。			
		16週	前期	末試験			授業内容を理解し、試験問題に対して正しく解答する ことができる。			
モデルコ	モデルコアカリキュラムの学習内容と到達目標									
分類		分	·野	学習内容	学習内容の到達目標			到達レベル	授業週	
					ヌクレオチドの構造を説明できる。			4		
	分野別の専門工学			生物化学	DNAの二重らせん構造、塩基の相補的結合を説明できる。			4	前2	
専門的能力		専化	学・生物		DNAの半保存的複製を説明できる。			4	前1,前2,前 4	
		系	分野		RNAの種類と働きを列記できる。			4	前2,前6,前 7	
					コドンについて説明でき、転写と翻訳の概要を説明できる。			4	前3,前6,前 7	
評価割合										
試験			レポート・課題	合計						
総合評価割合 90				10	100					
専門的能力 9		90			10	100				