科目基礎情報 科目番号 授業形態 開設学科 開設期 教科書/教材 担当教員 到達目標 1. 基本的な有材	0020 授業	│ 開講年度 令和02年度 (2	,		豆応有機化学	
科目番号 授業形態 開設学科 開設期 教科書/教材 担当教員 到達目標 1. 基本的な有格 2. 目的化合物の	0020 授業		科目区分	±00 / \2210		
開設学科 開設期 教科書/教材 担当教員 到達目標 1. 基本的な有格 2. 目的化合物の			科目区分		専門/選択	
開設期 教科書/教材 担当教員 到達目標 1.基本的な有様 2.目的化合物の	エコシス		単位の種別と単位	立数 学修単位: 2	2	
教科書/教材 担当教員 到達目標 1. 基本的な有格 2. 目的化合物の		ム工学専攻		専1	1	
担当教員 到達目標 1. 基本的な有格 2. 目的化合物の	後期	週時間数		2	2	
到達目標 1. 基本的な有機 2. 目的化合物の	有機反応					
1. 基本的な有格 2. 目的化合物の	野村 英作					
2.目的化合物位	v — — ,					
ルーノリツク	機反応を埋解し、) O合成の理論的展開	文応機構を説明する <i>こと</i> ができる。 開ができる。 				
		18444450141 2010	標準的な到達レベルの目安 未到達レ		+701年1 80日 80日ウ	
		理想的な到達レベルの目安 基本的な有機反応を深く理解し、			未到達レベルの目安	
評価項目1		を本りな有機及心を床へ達解し、 反応機構を説明することができる。			基本的な有機反応を理解し、反応機構を説明することができない。	
評価項目2		目的化合物の合成の効率的な理論 的展開ができる。	目的化合物の合成の理論的展開ができる。		目的化合物の合成の理論的展開ができない。	
学科の到達目	標項目との関	条				
JABEE C-2 JABI	E C-3					
教育方法等						
概要	識を学習することが	は電気、機械、生命医療など幅広い分野で使われている。物を作るという観点から、有機化合物合成の基礎知 「ることが必要である。希望する有機化合物を効果的に合成する方法を見出すためには有機化学反応を理解す 重要である。本講義においては、公的研究期間で長年研究してきた教員が有機合成にに関する知識を活かして 論に基づき基礎理論の理解に努める。				
授業の進め方・フ	法を考える 法 この科目(に、学生(習した有機化学の知識を再確認し、有 ることができるように、教科書を用い よ学修単位科目であり、授業毎に自学 よ演習課題を予習し毎回授業で解説((70%)、レポート(30%)により成	て有機電子論に基で 自習のための演習詞 発表) する時間を	ブいて合成のメカニ 課題を課します。ま 没ける。	にズムを中心に学習する。 また、授業内容の理解を深めるため	
注意点	事前学習 事後学習	次回の授業内容を予習すること。 演習問題を解き、次回の授業で提	出すること。			
授業計画						
	週	授業内容		週ごとの到達目標		
	1週	 機反応論のガイダンス と有機反応の基礎		有機反応の電子効果、立体効果などの反応の基礎について理解する。		
	2週	酸と塩基		酸解離平衡定数、飽和脂肪族モノカルボン酸の酸解離 に及ぼす置換基効果などについて理解する。		
	3週	求核置換反応1		SN2反応のメカニズムについて理解する。		
3rdQ		求核置換反応2		SN2反応の反応例について理解する。		
		求核置換反応3		SN1反応のメカニズムと反応例について理解する。		
		脱離反応1		E2反応のメカニズムと反応例について理解する。		
	7週)	脱離反応2		E1反応のメカニズムと反応例について理解する。		
	8週	校付加反応1		二ズムについて理解する。		
後期	9週 :	校核付加反応2		カルボニル基への各種求核試薬による付加反応のメカ ニズムについて理解する。		
	10週	\$核付加-脱離反応		カルボン酸誘導体の特徴とその反応性について理解する。		
	11週	核付加-脱離反応		カルボン酸誘導体の特徴とその反応性について理解する。		
4thQ	12週	定電子付加反応		ハロゲンの付加、プロトン酸の付加、ヒドロホウ素化 、相関移動触媒などについて理解する。		
	13週	香族化合物の反応性		ベンゼンとアルケンの反応性の違い、ベンゼンの共鳴 安定化、置換基効果について理解する。		
	14週	芳香族求電子置換反応		芳香族求電子置換反応について理解する。		
	15週	芳香族求電子置換反 応		置換基の配向性を利用する合成戦略について理解する。		
	16週	16週				
モデルコアカ	リキュラムの	 学習内容と到達目標				
	分野	学習内容 学習内容の到達目	要 		到達レベル 授業週	
評価割合	•					
:		演習課題	レポート 合計		合計	
		70	30		100	
総合評価割合		70	30 1		100	