広島	自商船高	等専門学校	開講年度	令和05年度 (2	2023年度)	授業	科目	電子物性工艺	≱	
科目基础		<u>ארנודא בי</u>			1025 + /又)	JX X	ין שרו	七 1 1271工工。	<u> </u>	
科目番号		10亩16			科目区分 専門 / 選抜		明 / '韓北			
授業形態			1023	725		,				
開設学科					単位の種別と単位 対象学年					
開設事	•	海事システム工学専攻 後期			週時間数		専1 2			
教科書/教					図書)					
担当教員		酒池 耕		アンハイ 人」(産来	囚首/					
		/日/匹 杯	Т							
到達目植		, = 1 cm + 1 cm 4 m ·								
(2)半 (3)半 (4)理	導体のキャ 導体におり 想的なPN	るキャリア	できる ルギーバンド構造を の挙動が理解できる り振る舞いが理解でき	•						
ルーブ!	リック				1			1		
						標準的な到達レベルの目安		未到達レベルの目安		
評価項目1		原子内の電子配 量子数を使って	置を理解でき、各 ・説服できる	原子内の電子配置を理解できる。		原子内の電子	配置を理解できない			
評価項目2				アとエネルギーバ 的に理解でき、物 数式を対応付けて	半導体のキャリアとエネルギーバ ンド構造を定量的に理解できる。		半導体のキャ	リアとエネルギーバ		
			説明できる。	5.				ンド構造を理解できない。		
評価項目3			式を対応付けて		半導体のキャリアの挙動を定量的 に理解できる。		半導体のギャーきない。	リアの挙動を理解で		
評価項目4			埋想的なPN接続を定量的に理解 を定量的に理解 舞いと数式を対る。	理想的なPN接合の電子の振る舞い を定量的に理解でき、物理的振る 理想的なPN接合の 舞いと数式を対応付けて説明でき を定量的に理解できる。			る舞い	理想的なPN接合の電子の振る舞い を理解できない。		
学科の	到達目標	項目との	関係							
教育方法	 法等									
概要		現象を物 ※この	物性論的に解説し、 科目では、民間企業	これに基づいてダイだ の実務経験がある	オードなどの半導作 教員が、その経験	体素子の素 を活かして	子物性を実践的な	と説明できる能 は電気・電子工	振る舞いを理解する は、半導体中の電子 力を身に付ける。 学教育を行う。 ることが前提である	
授業の進	め方・方法	- ` ´		、日々の予習復習が 授業内外を問わず、					ることが削捉しめる	
注意点		る。		ハるため, 授業の前(授業内容をもう一度)	·				おくことが重要であ	
授業の原	属性・履	修上の区分	.,							
□ アクラ	ティブラー	ニング	□ ICT 利用		□ 遠隔授業対応	<u>,</u>		☑ 実務経験の		
			•		•			•		
授業計画	画									
****		週	授業内容	授業内容 半導体内部の電子状態			週ごとの到達目標			
		1週					水素原子模型を理解できる			
	1	2週		半導体内部の電子状態			電子の波動・粒子の二重性、波動関数を理解できる			
	1	3週		半導体内部の電子状態			光の放射と吸収を理解できる			
	L.	4週		半導体のキャリアとバンド構造			固体のエネルギー帯構造について理解できる			
	3rdQ	5週	1 12 11 1 1 1 1	半導体のキャリアとバンド構造			伝導帯、価電子帯の構造を理解できる			
後期		6週		半導体のキャリアとバンド構造			真性半導体、不純物半導体の性質を理解できる			
	1	7週	半導体のキャリア			フェルミ・ディラックの分布関数を理解できる				
	1	8週		半導体のキャリアとバンド構造			電子と正孔のエネルギー分布を理解できる			
		9週				電子と正れのエイルキー分布を理解できる ドリフト電流を理解できる				
		10週	半導体のキャリアの挙動 半導体のキャリアの挙動							
	1		半導体のキャリアの挙動			写電率とイヤリアの移動度を理解できる キャリアの生成と再結合、拡散について理解できる				
		11调				半導体における光学的な過程を理解できる				
		11週				半道体に+			ついて理解できる	
	4thQ	12週	半導体のキャリア				うける光	学的な過程を理	こついて理解できる 2解できる	
	4thQ	12週 13週	半導体のキャリア 理想的なPN接合			PN接合の	らける光 整流作用	学的な過程を理 、高電界現象を	ついて理解できる 2解できる を説明できる	
	4thQ	12週 13週 14週	半導体のキャリア 理想的なPN接合 理想的なPN接合			PN接合の	らける光 整流作用	学的な過程を理 、高電界現象を	こついて理解できる 理解できる	
	4thQ	12週 13週 14週 15週	半導体のキャリア 理想的なPN接合 理想的なPN接合 到達度試験	の挙動		PN接合の	らける光 整流作用	学的な過程を理 、高電界現象を	ついて理解できる 2解できる を説明できる	
≘₩ /≖ 中川 /		12週 13週 14週	半導体のキャリア 理想的なPN接合 理想的なPN接合	の挙動		PN接合の	らける光 整流作用	学的な過程を理 、高電界現象を	ついて理解できる 2解できる を説明できる	
評価割る	合	12週 13週 14週 15週 16週	半導体のキャリア 理想的なPN接合 理想的なPN接合 到達度試験 答案返却・解説・	の挙動総復習		PN接合の PN接合の	おける光 整流作用 容量-電圧	学的な過程を理 、高電界現象を 王特性、過渡現	ついて理解できる 2解できる を説明できる 象を説明できる	
評価割倉	合 	12週 13週 14週 15週 16週	半導体のキャリア 理想的なPN接合 理想的なPN接合 到達度試験 答案返却・解説・	の挙動 総復習 レポート・課題	発表	PN接合の PN接合の 成果品・	おける光 整流作用 容量-電圧	学的な過程を理 、高電界現象を 王特性、過渡現 自学自習	ついて理解できる 2解できる を説明できる 象を説明できる	
総合評価	合 割合 7	12週 13週 14週 15週 16週 北験	半導体のキャリア 理想的なPN接合 理想的なPN接合 到達度試験 答案返却・解説・ 小テスト 0	の挙動 総復習 レポート・課題 15	発表 0	PN接合の PN接合の d 成果品・ 0	おける光 整流作用 容量-電圧	学的な過程を理 、高電界現象を 王特性、過渡現 自学自習 15	ついて理解できる 2解できる を説明できる 象を説明できる 合計 100	
総合評価	合 割合 7 沈力 3	12週 13週 14週 15週 16週 北験 0	半導体のキャリア 理想的なPN接合 理想的なPN接合 到達度試験 答案返却・解説・ ハテスト 0 0	の挙動 総復習 レポート・課題 15 10	発表 0 0	PN接合の PN接合の 成果品・ 0 0	おける光 整流作用 容量-電圧	学的な過程を理 、高電界現象を 正特性、過渡現 自学自習 15 10	ついて理解できる 2解できる を説明できる 象を説明できる 100 55	
総合評価	合 割合 7 記力 3	12週 13週 14週 15週 16週 北験 0 5	半導体のキャリア 理想的なPN接合 理想的なPN接合 到達度試験 答案返却・解説・ 小テスト 0	の挙動 総復習 レポート・課題 15	発表 0	PN接合の PN接合の d 成果品・ 0	おける光 整流作用 容量-電圧	学的な過程を理 、高電界現象を 王特性、過渡現 自学自習 15	ついて理解できる 2解できる を説明できる 象を説明できる 合計 100	