徳			開講年度 平成29年度 (2	2017年度)	授業科目					
科目基		ען ננונינ	1/13/1/2 1/3/25 1/2 (2		及本口口					
科目番号		0119		科目区分	専門 / 必何	多				
授業形態	į	講義		単位の種別と単位数	学修単位:					
開設学科	ļ	情報電	子工学科	対象学年	4					
開設期		通年		週時間数	1					
教科書/教				電気学会						
担当教員		杉村 敦	彦							
到達目		ル田 レレ フi		機品を記書するためな	甘歴加強を自	I				
ルーブ		IFMCU CE	も成文の気で生涯し、これらで心用する	「成品で以口 タ る/とは)ひ	全版加畝で为	についる。				
<i>// /</i>	<u> </u>		理想的な到達レベルの目安	標準的な到達レベル	 の目安	未到達レベルの目安				
評価項目			電荷と電磁場の相互作用として電	電荷と電磁場の相互	作用として電	電荷と電磁場の相互作用として電				
			磁気現象を十分に理解し、様々な 問題に解答できる。	磁気現象を理解し、 解答できる。	は、様々な问題に 磁気現象を理解できない。					
学科の	到達目標	項目との関	関係							
JABEE d 到達目標										
教育方法	•									
お日刀	Д ()	雷界や研		 とらえることによりそ	 の本質を理解 ⁻	 する。電磁気学は交流理論と並ぶ電				
概要		気系の重象として	P磁界に関わる諸現象を、物理的数学的にとらえることによりその本質を理解する。電磁気学は交流理論と並ぶ電 重要な科目であり、その内容は確立されている。モータの原理をはじめとし、身の回りの現象の多くは電磁的現 、て理解できる。							
哲学の半	め方・方法	教科書を	 を用いた講義を中心に授業を進める。数	 学的な記法を多く用い	 るため、微分 ¹	 や積分、およびベクトル解析などの				
	ジル・刀法	数学的基	基礎を必要とする。また、適宜、問題演	習も行う。						
注意点										
授業計	<u> </u>	週	授業内容	2亩-	 ごとの到達目標	ī				
		1週	オリエンテーション	講	 め概要説明。					
		1/0	電荷と力		クーロンの法則と電界の定義					
前期		2週	電界 スカラとベクトル	俊俊 ベ/ る。	複数個の点電荷による電界について理解する。 ベクトルの和と差、および内積や外積について理解する。 る。					
		3週	ベクトル関数の微分	ベク	ベクトル関数の微分(導関数)、位置ベクトル(動径 ベクトル)、微分演算子について理解する。					
	1-40	4週	ベクトル関数の積分 電気力線と電界の強さ	線和。	線積分、周回積分、面積分、体積分について理解する					
	1stQ				電気力線の密度と電界の強さについて理解する。 電束と電束密度、ガウスの法則(積分形)について理					
		5週	ガウスの法則(積分形)	解	解する。立体角についても理解する。					
		6週	ガウスの法則(微分形)	理解	ベクトル界の発散とガウスの法則(微分形)について 理解する。					
		7週	各座標系	クI	直角座標系・円筒座標系・球座標系における座標・ベクトル成分・基本ベクトルや線分要素・面積要素・体積要素について理解する。					
		8週	電位	電低	電位の定義と電位差について理解する。					
		9週	中間試験	電荷	電荷と電界、電位に関する理解度を確認する。					
		10週	電位の勾配	電	前期中間試験の解答と解説。 電位の勾配と電界の強さの関係や電気力線と等電位面の関係について理解する。					
						:ストークスの定理について理解する				
	2ndQ	11週	ベクトルの回転とストークスの定理		。 静電界の保存性(積分形)と、静電界のラプラスとポ					
		12週	電界 (1)	電気	アソンの方程式について理解する。 電気双極子、一様に帯電した球の電界や電位について 理解する。					
		13週	電界 (2)	表面	表面に一様に帯電した球、一様に帯電した無限円筒、 一様に帯電した無限平面による電界や電位について呼					
		14週	電界(3) 静電容量(1)	各官	解する。 各電界に関する演習を行う。 導体の電荷分布と電界について理解する。					
		15週	期末試験		電界、静電容量に関する理解度を確認する。					
		16週	答案返却など		前期末試験の解答と解説。					
後期		1週	静電容量(2)	導体	導体表面に働く力や、球、同心球間、平行平板間、平 行導線間の静電容量について理解する。					
		2週	静電容量(3)	電位	電位係数と容量係数や、静電遮へいについて理解する。					
	3rdQ	3週	電気影像法	電気る二解で	電気影像法、コンデンサの接続、静電容量に蓄えられるエネルギー、電界に蓄えられるエネルギー密度を理解する。					
		4週	静電容量(4) 誘電体(1)		静電容量に関する演習を行う。 誘電体の分極について理解する。					
		5週	誘電体(2)		誘電体中の電界や電束密度について理解する。					

		6週	誘電体	体 (3)		誘電体中の電荷間に働く電気力や2種類の誘電体の境界面におけるDとEについて理解する。						
		7週	誘電体(4) 電流と抵抗				誘電体中に蓄えられるエネルギーや誘電体を満たした 平行平板コンデンサの電極間に働く力について理解する。 電流と抵抗について理解する。				を満たした いて理解す	
		8週	中間記	 式験	静電容量や誘電体に関する							
		9週	磁界(1)		磁		後期中間試験の解答と解説。 磁気現象、アンペアの右ねじの法則、ビオ・サバール の法則について理解する。					
		10週	磁界(2)				無限長線状電流による磁界や、円形電流による磁界に ついて理解する。					
		11週	磁界	(3)	無限長ソレノイドの磁界や7 (積分形)、静磁界ベクトル ついて理解する。			アンペア周回積分の法則 レの回転の式(微分形)に				
4	thQ	12週	磁界	(4)	磁界のスカラ・ポテンシャル ルについて理解する。							
		13週	磁界	(5)			磁界中の電流の受ける力や平等磁界中におかれた長形コイルに働く力、平行導線の電流間に働く電磁力電流の単位、ホール効果や電磁力による仕事につい理解する。 ファラデーの法則、交流の発生、磁界中を運動する体に生じる起電力、電気・機械エネルギー変換、渦流について理解する。			く電磁力と		
		14週	電磁詞	秀導						運動する導 変換、渦電		
		15週	期末詞	式験			磁界や電磁誘導に関する理解度を確認する。				0	
		16週	答案记	反却など こうしゅう	後期末試験の解答と解説を				j う。			
モデルコス	アカリキ	ユラムの)学習	内容と到達	目標							
分類		分野		学習内容	学習内容の到達目標	5 7			到達レ/	ベル	授業週	
					電荷及びクーロンの法則を説明でき、点電荷に働く力等を計算で 4			4				
					電界、電位、電気力線、電束を説明でき、これらを用いた計算ができる。			4				
					ガウスの法則を説明でき、電界の計算に用いることができる。			4				
					導体の性質を説明でき、導体表面の電荷密度や電界などを計算で きる。			4				
	\\ B₹□Ⅱ ♠				誘電体と分極及び電束密度を説明できる。			4				
専門的能力	分野別の 門工学)専 電気・ 系分野			静電容量を説明でき、平行平板コンデンサ等の静電容量を計算で きる。			を計算で	4			
					コンデンサの直列接続、並列接続を説明し、その合成静電容量を 計算できる。			電容量を	4			
					静電エネルギーを説明できる。			4				
					電流が作る磁界をビオ・サバールの法則およびアンペールの法則 を用いて説明でき、簡単な磁界の計算に用いることができる。			4				
				1 -	電流に作用する力やローレンツ力を説明できる。			4				
					電磁誘導を説明でき、誘導起電力を計算できる。				4			
評価割合												
		試験		表	相互評価	態度	ポートフォリオ	その他		合計		
総合評価割合 80		80			0	0	0	20	20		100	
基礎的能力 80		80			0	0	0	20	1			