阿南工業高等専門学校		開講年度	令和02年度 (2	020年度)	授業科目	半導体電子工学		
科目基礎情報								
科目番号			科目区分	専門 / 必	専門 / 必修			
授業形態 授業			単位の種別と単位数	学修単位	: 2			
開設学科	電気コース			対象学年	4	4		
開設期	後期			週時間数	2	2		
教科書/教材	基礎から学ぶ半導体電子デバイス(大谷直毅 著, 森北出版)							
担当教員	担当教員 藤原 健志							
到读日樗	到達日樺							

|到達日標

- 1. 半導体中のキャリア密度を導出できる
 2. drift-diffusion modelによるキャリア輸送を説明できる
 3. ホール効果の説明および、半導体の伝導型の判定ができる
 4. ダイオードの整流特性をエネルギーバンド図を用いて説明できる
 5. トランジスタの動作原理をエネルギーバンド図を用いて説明できる

ルーブリック

	理想的な到達レベル(優)	標準的な到達レベル(良)	最低限の到達レベル(可)
到達目標1	半導体のエネルギーバンド図が説 明でき、キャリア密度を導出でき る	半導体中のキャリア密度を導出で きる	半導体中のキャリア密度について 説明できる
到達目標2	drift-diffusion modelによるキャリア輸送が説明でき、少数キャリアの連続の式を導出できる	drift-diffusion modelによるキャリア輸送を説明できる	キャリア輸送を説明できる
到達目標3	ホール効果について説明でき、半 導体の伝導型の判定ができ、キャ リア密度および移動度が計算でき る	ホール効果について説明でき、半導体の伝導型の判定ができる	ホール効果について説明できる
到達目標4	ダイオードの整流特性をエネルギーバンド図を用いて説明でき、整流特性を導出できる	ダイオードの整流特性をエネルギ ーバンド図を用いて説明できる	ダイオードの整流特性を説明でき る
到達目標5	トランジスタの動作原理をエネル ギーバンド図を用いて説明できる	トランジスタの動作原理を説明で きる	トランジスタの基本特性を説明で きる

学科の到達目標項目との関係

教育方法等

	あるpn接合ダイオードおよびバイポーラトランジスタの構造・特性・動作原理について理解することを目的とする 講義形式を中心に授業を進める この科目は学修単位のため、事前・事後学習としてレポート等を実施する
10000000000000000000000000000000000000	【授業時間30時間+自学自習時間60時間】
Դ 立 ⊢	サールト語とはと出されて、V+Bの体系もしがパントであたのしてファン(を犯してもくっしが出土して

基本的な電気磁気学を理解し、結晶の性質およびバンド理論について予習・復習しておくことが望ましい 注意点

授業計画

		週	授業内容	週ごとの到達目標
		1週	半導体の基礎	半導体の基本的性質を説明できる
		2週	半導体の基礎	エネルギーバンドモデルについて説明できる
		3週	半導体中のキャリア密度	半導体のキャリア密度を導出できる
		4週	半導体中のキャリア密度	キャリア密度の温度依存性を説明できる
	3rdQ	5週	半導体中のキャリア輸送	drift-diffusion modelによるキャリア輸送機構が説明 できる
		6週	半導体中のキャリア輸送	ホール効果を説明でき、各種パラメータを求めること ができる
		7週	半導体中のキャリア輸送	少数キャリアの連続の式を導出できる
		8週	中間試験	中間試験
後期	4thQ	9週	pn接合ダイオード	pn接合ダイオードの整流特性をエネルギーバンド図を 用いて説明できる
		10週	pn接合ダイオード	pn接合に関する諸量を計算できる
		11週	pn接合ダイオード	pn接合ダイオードの電流-電圧特性を導出できる
		12週	金属と半導体の接合による整流特性	ショットキー接合の整流特性をエネルギーバンド図を 用いて説明できる
		13週	バイポーラトランジスタ	バイポーラトランジスタの動作原理をエネルギーバン ド図を用いて説明できる
		14週	バイポーラトランジスタ	バイポーラトランジスタの動作に関わる諸量を計算で きる
		15週	バイポーラトランジスタ	バイポーラトランジスタの周波数特性を説明できる
		16週	期末試験	期末試験

モデルコアカリキュラムの学習内容と到達目標

分類 分野		分野	学習内容	学習内容の到達目標	到達レベル	授業週
専門的能力 分野別の専 門工学				半導体のエネルギーバンド図を説明できる。	4	後2
	電気・電子 系分野	電子工学	pn接合の構造を理解し、エネルギーバンド図を用いてpn接合の電流一電圧特性を説明できる。	4	後9	
			バイポーラトランジスタの構造を理解し、エネルギーバンド図を 用いてバイポーラトランジスタの静特性を説明できる。	4	後13	
				電界効果トランジスタの構造と動作を説明できる。	4	後14

評価割合							
	中間・定期試験	小テスト	ポートフォリオ	発表・取り組み姿 勢	その他	合計	
総合評価割合	60	10	30	0	0	100	
基礎的能力	20	0	10	0	0	30	
専門的能力	40	10	20	0	0	70	
分野横断的能力	0	0	0	0	0	0	