有明工業高等専門学校		開講年度	令和02年度 (2	1020年度)	授業科目	分析化学			
科目基礎情報									
科目番号	2L003			科目区分	専門 / 必	専門 / 必修			
授業形態	授業			単位の種別と単位数	D種別と単位数 履修単位: 1				
開設学科	創造工学科(現	環境生命コース)		対象学年	2	2			
開設期	後期			週時間数	後期:1	後期:1			
教科書/教材	分析化学;綿抜邦彦/サイエンス社、定量分析;浅田 誠一ら/技報堂								
担当教員	劉丹	劉丹							
カルキロュー			·						

|到達目標|

- 1 分析化学はどういう学問なのか、定性分析・定量分析、分析値、有効桁数について説明ができる。
 2 溶液の重量パーセント濃度、モル濃度、ppm、ppb濃度、または高濃度から低濃度の溶液の作るための計算ができる。溶液の濃度の換算ができる。
 3 標準物質、標準溶液、滴定、ファクターについて理解し、説明ができる。
 4 溶液のpH、中和滴定の計算ができる。
 5 酸化剤、還元剤、酸化還元反応について理解する。酸化還元反応に関する計算ができる。
 6 沈殿滴定とキレート滴定について説明できる。また計算することができる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安(可)	未到達レベルの目安
評価項目1	分析化学はどういう学問なのか、 定性分析・定量分析、分析値、有 効桁数について説明できる。その 関連付けて正しい語句を使用して 詳細に説明できる。 逼	分析化学はどういう学問なのか、 定性分析・定量分析、分析値、有 効析数について説明できる。	分析化学はどういう学問なのか、 定性分析・定量分析、分析値、有 効桁数について説明できない。
評価項目2	溶液の重量パーセント濃度、モル 濃度、ppm、ppb濃度、高濃度溶 液から低濃度の溶液の作るための 計算が正しくできる。また溶液の 各濃度間の換算が正しくできる。 正しい語句を使用して詳細に説明 できる。	溶液の重量パーセント濃度、モル 濃度、ppm、ppb濃度、高濃度溶 液から低濃度の溶液の作るための ができる。また溶液の各濃度 間の換算ができる。	溶液の重量パーセント濃度、モル 濃度、ppm、ppb濃度、高濃度溶 液から低濃度の溶液の作るための 計算ができない。また溶液の各濃 度間の換算が正しくできない。
評価項目3	標準物質、標定、ファクター、終 点などの専門用語について正しく 説明ができる。	標準物質、標定、ファクター、終 点などの専門用語について説明が できる。	標準物質、標定、ファクター、終 点などの専門用語について説明が できない。
評価項目4	溶液のpH、中和反応、酸化還元反応、沈殿反応とキレート反応について正しく理解し、また関係する計算が正しくできる。	溶液のpH、中和反応、酸化還元反応、沈殿反応とキレート反応について理解し、また関係する計算ができる。	溶液のpH、中和反応、酸化還元反応、沈殿反応とキレート反応について理解できない、また関係する計算ができない。

学科の到達目標項目との関係

学習・教育到達度目標 B-1

教育方法等

概要	分析化学は専門基礎科目の1つで、重要な科目です。この科目は定性分析と定量分析について説明し、分析値と有効析数の意味を学びます。溶液の各種の濃度の求め方・濃度間の換算などを勉強する。また、陽イオンと陰イオンの関係した化学反応を学習する。理論的に中和滴定、酸化還元滴定とキレート滴定について学習し、さらに基礎理論をもとに、各滴定に関する計算を学習する。さらに沈殿滴定を勉強すると共に、物質の分離について理解し、化学量論から沈殿量を求める。上述系統的に学習することにより、分析化学に対しての応用力を身につけます。
授業の進め方・方法	講義を主体とする。章末の演習問題などを演習し、または課題を課す。
分 立 F	ルヴは土東西の理解が必要です

注意点 化学基本事項の理解が必要です。

授業計画

JX X DII	쁴							
		週	授業内容	週ごとの到達目標				
		1週	分析化学、定性分析、定量分析、分析の値、分析の有 効数字	分析化学、定性分析・定量分析について説明できる。 分析値の意味について説明できる。有効桁数の意味を 理解する。				
		2週	溶液の濃度について 重量パーセント濃度、体積パーセント濃度、モル濃度 、ppm濃度、ppt濃度	溶液の重量パーセント濃度、体積パーセント濃度を求めることができる。溶液のモル濃度の計算ができる。 ppmとppbの意味を理解する。また、それぞれの濃度を求めることができる。				
		3週	溶液の各濃度間の換算	種々の溶液濃度の換算ができる。				
	3rdQ	4週	高濃度溶液から低濃度溶液の作製。標準物質、標準溶液、標準溶液の調製・標定、反応の当量点、終点、ファクターについて	高濃度溶液から低濃度溶液の作製ができる。標準物質、標準溶液、滴定、標定、反応の当量点、終点、ファクターについて説明ができる。				
		5週	溶液中の物質の濃度計算	溶液中の物質の濃度計算ができる。				
後期		6週	中和滴定の原理、酸及び塩基の濃度、陽イオンや陰イ オンの関係した化学反応	中和滴定の原理がわかる。溶液中の水素イオン濃度、 水酸化陰イオンの濃度とpHの関係がわかる。陽イオン や陰イオンの関係した化学反応について理解する。				
		7週	酸化剤、還元剤、酸化と還元、過マンガン酸カリウムの調製・標定	酸化剤、還元剤、酸化、還元について説明ができる。 過マンガン酸の調製、シュウ酸ナトリウムを用いて過 マンガン酸カリウムの標定ができる。				
		8週	中間試験					
	4thQ	9週	いろいろな酸化還元反応、酸化還元滴定に関する計算	酸化還元反応について理解し、いろいろな酸化還元反応の反応式を書ける。				
		10週	酸化還元反応&酸化還元滴定に関する計算	酸化還元反応に関係する計算ができる。				
		11週	沈殿反応について	沈殿反応について理解する。沈殿生成することによって、物質が分離することについて理解する。				
		12週	水溶液中の塩素イオンの定量	化学量論から沈殿量の計算ができる。また関係する反 応や指示薬、使用条件を理解する。				

	13週 Ac				+,Hg22+,Pb2+などの陽イオン、Cl-などの陰イオ				D定性分析に			
		14)	周	キレ- 準溶液	- ト滴定、キし 夜の調製、配信	ノート試薬、金属指 立結合、配位数、キ	示薬、EDTA標 レート生成反応	キレート滴定、キレート試薬、金属指示薬、EDTA標準溶液の調製、配位結合、配位数、キレート生成反応について説明ができる。			EVENTA標 - 卜生成反応	
		15	周	水の	更度の測定		水の硬度を求めることができる。					
		16	周	期末	テスト							
モデルコアカリキュラムの学習内容と到達目標												
分類			分野		学習内容	学習内容の到達目標			到達レベル	授業週		
						いくつかの代表的な陽イオンや陰イオンの定性分析のための化学 反応について理解できる。			4	後12		
					<u> </u>	沈殿による物質の分離方法について理解し、化学量論から沈殿量 の計算ができる。				4	後13	
車 即的総力	分野別		 専 化学・生	生物		陽イオンや陰イオンの関係した化学反応について理解し、溶液中の物質の濃度計算(定量計算)ができる。				4	後4,後5	
専門的能力	門工学		系分野			中和滴定についての原理を理解し、酸及び塩基濃度の計算ができ る。			算ができ	4	後6,後7	
						酸化還元滴定についての原理を理解し、酸化剤及び還元剤の濃度 計算ができる。				4	後9,後 10,後11	
						キレート滴定についての原理を理解し、金属イオンの濃度計算が できる。				3	後14	
評価割合												
試験		発	 表	相互評価	態度	ポートフォリオ	その他	合詞	†			
総合評価割合 100		00		0		0	0	0	0	100)	
基礎的能力 0			0			0	0	0	0	0		
専門的能力		100		0		0	0	0	0	100)	
分野横断的能力 0			0			0 0		0 0		О		