大分工業高等専門学校		開講年度	令和02年度 (2	2020年度)	授業科目	微分積分Ⅱ			
科目基礎情報	科目基礎情報								
科目番号	R02S303			科目区分	一般 / 必	一般 / 必修			
授業形態	授業			単位の種別と単位数	数 履修単位	履修単位: 4			
開設学科	情報工学科			対象学年	3	3			
開設期	通年			週時間数	4	4			
教科書/教材	齋藤純一他, 「新微分積分 I 」, 「新微分積分 I I 」, 「新確率統計」, 大日本図書/齋藤純一他, 「新微分積分 I 問題集」, 「新微分積分 I I 問題集」, 「新確率統計問題集」, 大日本図書/参考図書:微分積分学, 確率の参考書								
担当教員	福村 浩亨								
到達日煙									

- (1) 媒介変数表示・極座標表示による図形の面積等が求められる.変化率と積分の関係を理解できる(定期試験・課題) (2) 2変数関数の偏微分・重積分を学ぶことにより,多変数関数の概念・性質をより深く理解する.(定期試験・課題) (3) 2変数関数の偏微分・重積分の計算と応用ができる.(定期試験・課題) (4) 確率の基本的概念,条件付確率を理解し,簡単な場合について、確率を求めることができる.

ルーブリック

V 2277								
	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安					
評価項目1	媒介変数表示・極座標表示による 図形の面積・曲線の長さ等を多様 な手法で求めることができる. 微 分積分の応用として, 動点の位置 ・速度・加速度を求めることがで きる.	基本的な媒介変数表示・極座標表示による図形の面積・曲線の長さ等を求めることができる。また,動点の位置・速度・加速度を求めることができる。	基本的な媒介変数表示・極座標表示による図形の面積・曲線の長さ等を求めることができない.					
評価項目2	高次近似式を理解し,マクローリン展開を求めることができ,級数の関係性について理解を深めることができる.	2次近似式を計算することできる . また, 基本的な関数のマクロー リン展開を求めることができる . また, 数列・級数の極限値を求 めることができる.	近似式の計算をすることができず ,数列や級数の極限を計算することができない.					
評価項目3	2変数関数の偏微分・重積分の計算ができ、変数変換を用いて、複雑な重積分の計算をすることができる。また、これらを利用して、2変数関数の曲面の面積を求めることができる。また領域の重心を求めることができる。	2変数関数の偏微分・重積分を計算することができ、極座標を用いて変数変換することができる.	2変数関数の基本的な偏微分・重積 分の計算をすることができない.					
評価項目4	確率の基本的概念を理解し,問題 文から計算すべき式を立て,計算 することができる.	確率の基本的概念を理解し,簡単な場合について確率を求めることができる.	確率の基本的概念を理解できない・					

学科の到達目標項目との関係

学習・教育目標 (B1)

教育方法等

		微分積分Iでは、1変数関数の基本的な関数の微積分を学んだ、微分積分IIでは、それらを基礎にして、積分のいろいろ
	_	な応用, 関数の級数展開および2変数関数の微積分すなわち偏微分・重積分とその応用(極値問題, 曲面積など)を学
概理	要	ぶ. また,確率の基本的概念,条件付確率を理解し,簡単な場合について、確率を求めることを学ぶ.

授業時間:85.5時間

黒板を用いた対面授業の手法をとる。1変数関数における曲線の長さ・体積の計量を求めることで、積分の性質を学習する。さらに、2変数関数における偏微分の概念を理解し、合成関数・高次偏導関数を求めることができるようにする。また、2変数関数における累次積分を計算できるようにし、それらの応用を学習すること、さらには確率の基礎概念を理解することを目的とする.授業中指名された問題については、解答を板書する.

授業の進め方・方法

(評価について) 到達目標の(1)〜(4)について 3 回の定期試験と課題で評価する。 1,2年の復習のための到達度試験を2回実施し,その結果を総合評価に加える。 総合評価=(定期試験60%+到達度試験20%・課題(小テストを含む)20%)とする。 総合評価60点以上を合格とする。

出席状況・授業中の態度により 10%を上限として減点する場合がある.

(再試験について)

総合評価が60点未満の場合は再試験を行う.

予習・復習をしておくこと、特に復習に時間を十分かけること、 課題ノート・課題プリントは,提出日を厳守し,必ず提出すること 注意点

評価

授業計画

以不可臣	-					
		週	授業内容	週ごとの到達目標		
		1週	媒介変数表示による図形の面積, 曲線の長さ	媒介変数表示の図形や曲線の計量を定積分を用いて求めることができる.		
		2週	極座標による図形の面積や長さ	極座標の概念を理解し、図形の面積や曲線の長さを求めることができる.		
		3週	広義積分	広義積分の概念を理解し、計算することができる.		
前期	1stQ	4週	変化率と積分	動点の位置・速度・加速度を求めることができる.		
נאנים	1300	5週	多項式による近似式	多項式の近似式を求めることができ, その有用性を具体的な関数を用いて理解する.		
		6週	数列の極限	数列や級数の収束・発散について理解し,数列の極限 を求めることができる.		
		7週	関数のマクローリン展開	マクローリン展開とその存在範囲を求めることができる.		

2回 2回 2回 2回 2回 2回 2回 2回			O)E	1+1	= かい +			Τ.,	ナノニ の公式を出め ス	の世紀を理解す	- z
20回 2を設置機の解除が一条物分 2要機関機の解除が一条物分 2を設置機の解除が一条的が一点ができる。			8週								
2								2	2変数関数の偏微分・全微分の概念を理解し, 求めるこ		
13週 無理機関 ここまで学習した内容を基督を達して定義でせる。			11週	接平面の方程式							
14週		2ndQ	12週	合成	関数の微分		偏	開微分を用いて, 曲面の接		ことができる	
15回			13週	練習	問題			ت	こまで学習した内容を演	習を通して定着	させる.
15回 高次福導開致 高次福導開致 高次福減開致の性質を理解し、その特質を利用して偏 持限決分の名とができる。 2回 2回 2回 2回 2回 2回 2回 2			14週	前期	末試験						
13日				前期	期期末試験の解説		訂	試験で理解不足の箇所を復習する.			
2回 2度数別数の極大種・極小種 2度数別数の地紙通信有意識し、その条件を利用して 2度数別数の機分法 2座標分のたったができる。 2座標分の定義 2座標分の定義 2座標分の定義 2座標分の定義 2座標分の定義 2座標分の主義できる。 2座標分の主義できる。 2座標分の主義できる。 2座標分の主義できる。 2座標分の主義できる。 2座標分の主義できる。 2座標分を開するだけできる。 2座標分を開するだけできる。 2座標分を開きるたけできる。 2座標分を開いて連載するためできる。 2座標分を開いて連載するに必ずを要して、2座標分を開いて連載するに必ずを要して、2座標分を開いて連載するに必ずを要して、2座標分を開かることができる。 11週 2座標分におる広義補分 2座標分を用いて、変数変換をして、2座域分を求めることができる。 11週 2座標分におる広義補分 2座標分を対象の解説 2座標分を出めることができる。 2座標分のいろいろな応用 2座標分を出めることができる。 2座域の画面の画様を求めることができる。 2座域の画面の画様を求めることができる。 2座域の画面の画様を求めることができる。 2座域の画面の画様を求めることができる。 2座域の画面の画様を求めることができる。 2座域の画の画を変数の解説 2座標分の形を使置する。 2座域の画の画を変数の解説 2座域の画の画を変数の形式を開解し、開始な確かできる。 3 2座域の画の形を使置する。 2座域内数の形式を推定を開かて来の表のことができる。 3 2座域の画のを使置する。 2座域内数の定義域を理解し、不等式やグラフで表すことができる。 3 2座域の画を変数の解説を求めることができる 3 2座域のの一できる。 2座域内数の定義域を理解し、不等式やグラフで表すことができる 3 2座域の数の定域の原数が対していて、2座までの解的を求めることができる 3 2座域の数ののでを使用が、2を域内数ののできる。 2座域内数ののできる。 2座域内数ののできる。 2座域内数ののできる。 2座域内数ののできる。 2座域内数ののによりできる。 2座域内数のの形がを使用を変数のによりできる。 2座域内数のの形がな可は、原理ならことができる。 2座域ののののによりできる。 2座域のののののののによりできる。 2座域のののののののののののののののののののののののののののののののののののの				高次	欠偏導関数		高	高次偏導関数の性質を理解し、その特質を利用して偏 道関数やおみることができる			
3日 日内数の強力法 日内数の独力法 日内数の独力法 日内数の独力法 日内数の独力法 日内数の独力法 日内数の保護 日内数の保護 日内数の保護 日内数の保護 日内数の保護 日内数の保護 日内数の保護を開から計算ができる。 日内数の保護 日内数の保護 日内数の保護を開から計算ができる。 日内数の保護 日内数の保護を開から計算ができる。 日内数の保護を開からままれてはから体情を求めることができる。 日内数の保護を開からままれてはから体情を求めることができる。 日内数の保護を開からままれてはから体情を求めることができる。 日内数の保護を開からままれてはから体情を求めることができる。 日内数の保護を開からままれてはから体情を求めることができる。 日内数の保護を開からままれてはからないのような保護 日内数の保護を開からままれてはからないできる。 日内数の保護を開からままれてはからないのような保護を開からままれてはからないのようなの発酵を開からままれてはからないのようなの保護を関する。 日内数の保護を開からままれてはからないのようなの保護を収めることができる。 日内数の保護を開からままれてはからないのようなの保護を収めることができる。 日内数の保護を開からままれてはからないのようなのの保護を収めることができる。 日内数の保護を開からままれては、日内数の保護を収めることができる。 日内数の保護を収めることができる。 日内数の保護を収めるに対しるに対しるに対しるに対しるに対しるに対しるに対しるに対しるに対しるに対し			2週	2変数				2変数関数の極値条件を理解し、その条件を利用して			
### 3rdQ 名子の一きとで随値を求め、さらに最大値・用小値を求める。 5週 2年積分の定義 2字数例数における積分の限念を理解し、具体的に 2年積分の定義 2字数例数における成分の限念を理解し、具体的に 2年積分の定義 2字数例数におけてなく、積分側下を楽史して 12回 立体の体積 2年前分を用いて曲面等で囲まれた立体の体育を求めることができる。 3回 故郷中部試験 4世紀を用いて、要数変換をして2年積分を求めることができる。 4世紀を用いて、変数変換 4世紀を用いて、変数変換をして2年積分を求めることができる。 4世紀を開発を開始を用いて、変数変換 4世紀を開発を開始を開始を開始を開始を開始を持ちます。 4世紀を開始して、2里積分を求めることができる。 2年前分における広義積分 2年前分にな成業積分を開始を開始を表めることができる。 3回 理解の定義と基本性質 4年の定意が変数の側面の面積を求めることができる。 3世紀の重心を表めることができる。 5世末試験 55世 学年末試験 55世 学年末試験 55世 学年末試験 55世 学年末試験 55世 学年末試験 30分の5な標準を求めることができる。 16世 学年末は験の解説 3回版を提出することができる。 3世紀があるのによができる。 5世紀教育の開始な級数の収束・発散を卸べ、その和を求めることができる。 3世紀が最後の開始な級数の収束・発散を卸べ、その和を求めることができる。 3世紀が最後について、曲線の長さを定案がで求めることができる 3世紀が最後について、120米での主義を実施のことができる。 3世紀が最後について、2年の日本の教教の極端を求めることができる。 4世記が成の作成を理解し、配単などの本を表めることができる。 3年前の定義を用いて、基本的な変数例数の極値を求めることができる。 3年前の定義を用いて、単立なの体を表めることができる。 3年前の定義を用いて、単立なの体を表めることができる。 3年前の企業を表めることができる。 3年前の企業を表の第二とができる。 3年前の企業を表の第二とができる。 3年前の企業を表ののでとができる。 3年前の企業を表ののでとができる。 3年前の企業を表ののことができる。 3年前の定義を表ののでとができる。 3年前の企業の表面にかで変数の表のので、単立なの体を表めることができる。 3年前の企業の表面にかで変数の表面のでは、手線のの確率を表ののでとができる。 3年前の企業の表面にかで変数の表面のでは、手線のの第二は、対域数のマクローリ 3年前の表面に対しを表面にかって変更を表面において変数ののでは、手線のの確率を表のることができる。 3年前の企業ののでとができる。 3年前の企業ののでとができる。 3年前の企業ののでとができる。 3年前の企業ののでとができる。 3年前の企業ののでとができる。 3年末のできるのできる。 3年末のできるのできるのできるのできるのできるのできるのできるのできるのできるのできる			3週	陰関	関数の微分法			陰関数を用いて,多変数の(偏)微分を計算をするこ			
3rcQ 5回 2単積分の定義 2要類別数によりる高力の観念を理解し、具体的に 2 目標分の指針できる。 2単積分 (第次間分)			4週	条件	付き極値			あ あ		め,さらに最大	値・最小値
6週 2単柄分 (第次柄分)		3rdQ	5週	2重和	 責分の定義			2	変数関数における積分の	概念を理解し, :	具体的に2重
2			6週	2重和	責分(累次積分	分)		累	県次積分を計算するだけで	なく,積分順序	を変更して
後期 極単標による2重積分 振振波 振振 北 振振 北 振振 振 振振 振 振振 振 振振 振 振振 振振 振振 振振 振振 振振 振k 振k 振k 振k 振k 振k 北 振k 表k 北 北 北 北 北 北 北 北 北			7週	立体				2	重積分を用いて曲面等でに	囲まれた立体の	体積を求める
2回 後期中間試験	後期		8週	極座	 Y標による2重積分		桓		をして2重積分	を求めること	
### 10週 後期中間試験の解説			9週	後期	 中間試験						
### ### ### ### #####################			10週	後期	後期中間試験の解認 変数変換				任意に変数変換をして,2重積分を計算することができ		
4thQ 12週 2重積分のいろいろな応用 2変数関数の曲面の面積を求めることができる。また。領域の重心を求めることができる。また。領域の重心を求めることができる。また。領域の重心を求めることができる。また。領域の重心を求めることができる。 13週 住宅の定義と基本性質 確認の定義や基本的考えを理解し、簡単な確率の計算ができる。 15週 学年未試験 16週 学年未試験 16週 学年未試験 16週 学年未試験 16週 学習内容の到達目標 17世紀を含むいろいろな数列の極限を求めることができる。 3			1113						曲面等で囲まれた立体の体積を求めることができる. 2重積分による広義積分を理解し、計算することができ		
13週 確率の定義と基本性質 一様本の定義を基本的考えを理解し、簡単な確率の計算ができる。		4thQ						2変数関数の曲面の面積を求めることができる.また			
14週							石	確率の定義や基本的考えを理解し,簡単な確率の計算			
15週 学年末試験										・レゼブキス	
16週 学年末試験の解説 試験で理解不足の箇所を復習する。								いついつな唯学であめることができる。			
分野 学習内容 学習内容の到達目標				学年	末試験の解説			証	は験で理解不足の箇所を復	習する.	
不定形を含むいろいろな数列の極限を求めることができる。 無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 簡単な場合について、曲線の長さを定積分で求めることができる。 2変数関数の定義域を理解し、不等式やグラフで表すことができる。 合成関数の偏微分法を利用して、偏導関数を求めることができる。 合成関数の偏微分法を利用して、偏導関数を求めることができる。 偏導関数を用いて、2次までの偏導関数を求めることができる。 偏導関数を用いて、基本的な2変数関数の極値を求めることができる。 2重積分を累次積分に直して求 3 をっといできる。 2重積分を用いて、簡単な2重積分を累次積分に直して求 3 をっとができる。 2重積分を用いて、簡単な2重積分を累次積分に直して求 3 をっとができる。 2 重積分を用いて、簡単な3を同じついて確率を求めることができる。 3 乗を理解し、簡単な場合について、確立事象の確率を理解し、簡単な場合について、確率を求めることができる。 3 乗がは場合について確率を求めることができる。 1 変数関数の局所的な1次近似式を求めることができる。 1 変数関数のディラー原制を理解し、基本的な関数のマクローリン展削を求めることができる。 1 変数関数のディラー原制を理解し、基本的な関数のマクローリン展削を求めることができる。 3 乗がりまができる。 3 乗がりなができる。 3 乗がりまができる。 3 乗がりまがりまができる。 3 乗がりまができる。 3 乗がりまができる。 3 乗がりまができる。 3 乗がりまができる。 3 乗がりまがりまができる。 3 乗がりまができる。 3 乗がりまができる。 3 乗がりまができる。 3 乗がりまができる。 3 乗がりまができる。 3 乗がりまがりまがりまがりまがりまがしまがりまがりまがりまがしまがしまがしまがりまがりまがしまがしまがりまがりまがりまがしまがしまがしまがりまがしまがしまがしまがりまがりまがしまがしまがしまがしまがしまがしまがしまがしまがしまがしまがしまがしまがしま	モデルニ]アカリ:	キュラム	るの学習	内容と到達	主目標	<u> </u>				
無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 簡単な場合について、曲線の長さを定積分で求めることができる。。 2変数関数の定義域を理解し、不等式やグラフで表すことができる。。 合成関数の偏微分法を利用して、偏導関数を求めることができる。。 偏導関数を用いて、2次までの偏導関数を求めることができる。。 編導関数を用いて、基本的な2変数関数の極値を求めることができる。2重積分の定義を理解し、簡単な2重積分を累次積分に直して求めることができる。2重積分を用いて、簡単な2を対し、簡単な3を元とができる。3 2重積分を用いて、簡単な3を元とができる。3 2重積分を用いて、簡単な場合について確率を求めることができる。3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	分類		分	野	学習内容	学習	内容の到達目標			到達レベル	授業週
本学 本学 本学 本学 本学 本学 本学 本学											
空変数関数の定義域を理解し、不等式やグラフで表すことができる。						るこ	ることができる。			3	
表示						0				³ 3	
一切						2変数関数の定義域を理解し、不等式やグラフで表すことができる。				3	
基礎的能力 数学 数学 数学 数学 数学 数学 数学 数学						合成関数の偏微分法を利用して、偏導関数を求めることができ 。			3		
数学 数学 数学 数学 数学 数学 2重積分の定義を理解し、簡単な2重積分を累次積分に直して求 3 2重積分の定義を理解し、簡単な2重積分を求めることができる。 4 2重積分を用いて、簡単な立体の体積を求めることができる。 3 2 2重積分を用いて、簡単な立体の体積を求めることができる。 3 3 3 3 3 3 3 3 3						簡単な関数について、2次までの偏導関数を求めることができる。			3		
2里債力の定義できる。 3	甘林的北山	- ***	***	<u>4</u>						- 3	
2重積分を用いて、簡単な立体の体積を求めることができる。 3 独立試行の確率、余事象の確率、確率の加法定理、排反事象の確率を理解し、簡単な場合について、確率を求めることができる。 3 条件付き確率、確率の乗法定理、独立事象の確率を理解し、簡単な場合について確率を求めることができる。 簡単な1変数関数の局所的な1次近似式を求めることができる。 1変数関数のテイラー展開を理解し、基本的な関数のマクローリン展開を求めることができる。 オイラーの公式を用いて、複素数変数の指数関数の簡単な計算ができる。 オイラーの公式を用いて、複素数変数の指数関数の簡単な計算ができる。 対域に対している。 3 対域に対し、 4 対域に対し、 3 対域に	奉 啶的能力	」 数字	数=	f						3	
独立試行の確率、余事象の確率、確率の加法定理、排反事象の確率を理解し、簡単な場合について、確率を求めることができる。											
条件付き確率、確率の乗法定理、独立事象の確率を理解し、簡単な場合について確率を求めることができる。 3 簡単な1変数関数の局所的な1次近似式を求めることができる。 3 1変数関数のテイラー展開を理解し、基本的な関数のマクローリン展開を求めることができる。 3 本イラーの公式を用いて、複素数変数の指数関数の簡単な計算ができる。 3 評価割合 定期試験 課題(小テストを含む) 合計						独立試行の確率、余事象の確率、確率の加法定理、排反事象の				確っ	
簡単な1変数関数の局所的な1次近似式を求めることができる。 3 1変数関数のテイラー展開を理解し、基本的な関数のマクローリン展開を求めることができる。 3 オイラーの公式を用いて、複素数変数の指数関数の簡単な計算ができる。 3 評価割合						条件	条件付き確率、確率の乗法定理、独立事象の確率を理解し、簡単				
1変数関数のテイラー展開を理解し、基本的な関数のマクローリン展開を求めることができる。 3 オイラーの公式を用いて、複素数変数の指数関数の簡単な計算ができる。 3 評価割合 定期試験 到達度試験 課題(小テストを含む) 合計						_	1 1 1 1				
オイラーの公式を用いて、複素数変数の指数関数の簡単な計算が 3 できる。 評価割合						1変数関数のテイラー展開を理解し、基本的な関数のマクローリ				1	
評価割合 定期試験 到達度試験 課題(小テストを含む) 合計						オイラーの公式を用いて、複素数変数の指数関数の簡単な計算が			p _i 3		
定期試験 到達度試験 課題(小テストを含む) 合計	評価割合	<u> </u>			•					•	•
		-		定期試験			到達度試験	課題	(小テストを含む)	合計	
	総合評価害		-						,		

基礎的能力	60	20	20	100
専門的能力	0	0	0	0
分野横断的能力	0	0	0	0