新	居浜	工業高等専門学校		機械工	学科	開講年度 平成25年度 (2013年度)	
学	科到	達目標	1		1		
科目分	区	授業科目	科目番号	単位種別	単位数	1 2 3 4 1 2 3	履修上の区分
_ 般	必修	環境と人間	10041 0	履修単 位	1	吉川 貴 土,白 井,カゆ き, 本 佳計 水原 靖廣	
_ 般	必修	保健体育 5	10157 1	履修単 位	1	安藤 進 一,松 木 弥生	
— 般	必修	時事英語	10179 0	履修単 位	2	鴻上 政 明,坂 田,美奈 子	
— 般	選 択	国語特講	10411 0	履修単 位	2		
— 般	選択	応用倫理学	10421	履修単位	2		
般	選 択	法学	10422 0	履修単 位	2	[]]]]]] 2 2	
般	選 択	歴史特論	10423 0	履修単 位	2	佐伯 徳 大伯 徳	
— 般	選 択	国際理解	10425 0	履修単 位	2	[]	
— 般	選 択	自然科学史	10441 0	履修単 位	2	1 1 1 1 1 2 2 柴田 亮	
— 般	選 択	英会話 3	10471 1	履修単 位	1	温上政明	
— 般	選 択	実用英語	10472 0	履修単 位	2		
— 般	選 択	総合英語	10473 0	履修単 位	2		
— 般	選択	中級独語	10483 0	履修単 位	2	十四十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十	
— 般	選 択	中級中国語	10484 0	履修単 位	2	1 1 1 1 2 2 前崎麗	
— 般	選 択	独語会話	10485 0	履修単 位	1	木田 綾子	
専門	必修	非金属材料	11050 1	履修単 位	1	高橋 知 司,神 野 勝志	
専門	必修	材料力学3	11050 2	履修単 位	2		
専門	必修	流体機械	11050 4	履修単 位	1		
専門	必修	塑性加工学	11050 5	履修単 位	2		
専門	必修	機械制御	11050 6	履修単 位	2		
専門	必修	機械力学	11050 7	履修単 位	1	口 2 谷口 佳 文	
専門	必修	電気工学概論 2	11050 8	履修単 位	2	[]	
専門	必修	化学工学概論	11050 9	優修単 位	1		
専門	必修	技術者倫理	11051 0	履修単 位	1	平田 傑之,內藤 出部、公治 人心原,以此, 人心原, 人心原, 「漢十,潤也	
専門	必修	経営工学	11051 1	履修単 位	1	下村信	
専門	必修	機械設計製図	11051 2	履修単 位	2	(文 ¹)	

専門	必修	工学実験 2	11051 3	履修単位	1.5	吉士口松雄平傑谷充越真今望野岡久川谷佳田二田之脇浩智治西、紘田夫貴、文	
専門	必修	卒業研究	11051	履修単位	12	吉士口松雄平傑名充越真今望野	
専門	必修	伝熱工学	11051 5	履修単 位	1	下村 信 雄	

THE	礎情報							
科目番号		110501		科目区分	専門 / 必修			
授業形態		講義		単位の種別と単位数	履修単位:	1		
開設学科		機械工学	学科	対象学年	5	5		
開設期		後期		週時間数	2			
教科書/勃	数材	配布プリ	リント					
担当教員		高橋 知	司,神野 勝志					
到達目	標							
2. 無機 3. 無機	⊌材料や有機 ⊌材料や有機	材料を構成 材料の製造	のようなものがあるかを理解できること している原子の構造と化学結合との関係 方法について理解できること 法,実用例を理解できること	え 「「たっいて理解できるこ	٢			
ルーブ	リック							
			理想的な到達レベルの目安	標準的な到達レベルの	 D目安	未到達レベルの目安		
評価項目	1		無機材料や有機材料にはどのよう なものがあるかを理解し,説明で きる	無機材料や有機材料になものがあるかを資料 解できる		無機材料や有機材料にはどのよう なものがあるかを理解できない		
評価項目	2		無機材料や有機材料を構成している原子の構造と化学結合との関係について理解し、説明できる	無機材料や有機材料になものがあるかを参えば理解できる		無機材料や有機材料を構成している原子の構造と化学結合との関係について理解できない		
評価項目	3		無機材料や有機材料の製造方法について理解し,説明できる	無機材料や有機材料になものがあるかを参えば理解できる	こはどのよう き資料をみれ	無機材料や有機材料の製造方法に ついて理解できない		
評価項目	4		無機材料、有機材料の加工法,実 用例を理解し,説明できる	無機材料や有機材料になものがあるかを参えば理解できる		無機材料、有機材料の加工法,実 用例を理解できない		
学科の	到達目標工	 頁目とのB	 関係					
専門知識	(B)							
教育方	 法等							
概要		る。またいるか理	4学で学んだ材料以外の材料(無機材料 5、最近開発されつつある新素材につい 理解することを目標とする。	て、その特性や製法に [*] 	ついて学び、る	また、どのような分野で利用されて 		
授業の進	め方・方法	野の科学	リントを中心に板書形式で講義を進める 学記事などを紹介し、広く材料科学に関	する内容への興味を深る	<u>めてもらう。</u>			
注意点		」に関し	5端産業分野を支えているのは「材料」 しての興味を深めて欲しい。 金属材料について学習した。本科目は、					
本科目								
授業計	画							
		週	授業内容	週ご	との到達目標			
		1週	人間生活とセラミックス	1				
		2週	原子の構造と化学結合	2				
		3週	固体構造と物性	2	2			
		4週	固体構造と物性	2				
	3rdQ	5週	セラミックスの合成プロセス	3 器、ガラス、セ ₄				
		6週	セラミックスの性質とその応用(陶磁					
			メント)		<u>'</u>			
		7週	セラミックスの性質とその応用	インセラミック				
		8週	セラミックスの性質とその応用(ファ ス)	インセラミック 4				
% #□		9週	有機材料の構造と特性(各種プラスチ	・ックス) 1				
後期		10週	高分子合成 連鎖反応(ラジカル重合)	2				
		11週	高分子合成 2 ラジカル重合・共重合他 汎用プラス	チックス 3				
	4thQ	12週	高分子合成3 遂次重合(重縮合) エンジニアリンク	ブプラスチックス 4				
		13週	高分子の物性-高分子の結晶・非晶 粘弾性 ガラス転移温度	4				
		14週	高分子の物性-高分子の結晶・非晶 粘弾性 ガラス転移温度 他	4				
		15週	高分子の物性 その2	4				
		1 >	1 444 HR - L = NEA	1				
		16週	学期末試験					
モデル	 コアカリ=		字期末試験 			到達レベル 授業週		

相互評価

0

態度

0

ポートフォリオ

0

その他

20

合計

100

評価割合

総合評価割合

試験

80

発表

0

基礎的能力	0	0	0	0	0	0	0
専門的能力	80	0	0	0	0	20	100
分野横断的能力	0	0	0	0	0	0	0

新居浜工業高等専門学校		開記		平成	29年度 (2	017年度)	授業科目	材料力学3
科目基礎情報								
科目番号	110502					科目区分	専門 /	必修
授業形態	講義					単位の種別と単位数	複 履修単	位: 2
開設学科	機械工学科					対象学年	5	
開設期	通年					週時間数	2	
教科書/教材	材料力学	中島	正貴	著	(コロナ社)			
担当教員	越智 真治							
到海口煙								

|到達目標

- 1.機械設計技術者試験レベルの問題が解けるようになること.
 2.異種材料からなるはりに生じる曲げモーメント,応力に関する理論および実験公式を理解し,具体的問題に適用できること
 3.曲げとねじりを受ける軸についての理論および実験公式を理解し,具体的問題をに適用できること
 4.ひずみエネルギーとカスチリアーノの定理の理論および実験公式を理解し,具体的問題に適用できること
 5.偏心荷重の生じる柱に関する理論および実験公式を理解し,具体的問題に適用できること
 6.柱の座屈に関する理論および実験公式を理解し,具体的問題に適用できること.

ルーブリック

		,	
	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	機械設計技術者試験レベルの問題 を解くことができ,合格レベルで ある	機械設計技術者試験レベルの問題 を参考資料を見ながらであれば解 くことができる	機械設計技術者試験レベルの問題が解けない
評価項目2	異種材料からなるはりに生じる曲 げモーメント,応力の理論および 実験公式を理解し,具体的問題に 適用できる	異種材料からなるはりに生じる曲 げモーメント, 応力に関する基礎 的な問題を解くことができる	異種材料からなるはりに生じる曲 げモーメント, 応力を求めること ができない
評価項目3	曲げとねじりを受ける軸について の理論および実験公式を理解し , 具体的問題に適用できる	曲げとねじりを受ける軸について の基礎的な問題を解くことができ る	曲げとねじりを受ける軸について の問題を解くことができない
評価項目4	ひずみエネルギーとカスチリアー ノの定理の理論および実験公式を 理解し, 具体的問題に適用できる	ひずみエネルギーとカスチリアー ノの定理に関する基礎的な問題を 解くことができる	ひずみエネルギーとカスチリアー ノの定理に関する問題を解くこと ができない
評価項目5	偏心荷重の生じる柱に関する理論 および実験公式を理解し,具体的 問題に適用できる	偏心荷重の生じる柱に関する基礎 的な問題を解くことができる	偏心荷重の生じる柱に関する問題 を解くことができない
評価項目6	柱の座屈に関する理論および実験 公式を理解し, 具体的問題に適用 できる	柱の座屈に関する基礎的な問題を 解くことができる	柱の座屈に関する問題を解くことができない

学科の到達目標項目との関係

専門知識 (B)

教育方法等

概要	材料力学1,2より続く内容である.これまでに学習した内容の総復習の演習をしながら,材料力学的に適切な形や構造 の考え方について学習する.また,異種材料からなるはりの問題,ひずみエネルギーの理論,短柱の核と長柱の座屈に ついて具体的問題の解法を修得する
授業の進め方・方法	本科目は、材料力学1および材料力学2の内容と連携している。各種機械構造物の設計等においては、様々な応力状態における材料力学的知識による解析が不可欠である。材料力学1、2および本講義の内容を修得すれば、実機の設計等に十分役立つ、教科書・配布資料・板書を中心に講義を進め、内容の理解と応用力養成のため問題演習を多く行う。

注意点 電卓を準備すること

本科目の区分

授業計画

12末日四								
		週	授業内容	週ごとの到達目標				
		1週	総復習問題演習(応力とひずみ)	1				
		2週	総復習問題演習(応力とひずみ)	1				
		3週	総復習問題演習(引張および圧縮)	1				
	1ctO	4週	総復習問題演習(引張および圧縮)	1				
	1stQ	5週	総復習問題演習(ねじり)	1				
		6週	総復習問題演習(ねじり)	1				
		7週	総復習	1				
 前期		8週	中間試験					
削粉		9週	総復習問題演習(はりの曲げ)	1				
		10週	総復習問題演習(はりの曲げ)	1				
		11週	総復習問題演習(はりに生じる応力)	1				
	2ndQ	12週	総復習問題演習(はりに生じる応力)	1				
	ZiluQ	13週	総復習問題演習(はりの変形)	1				
		14週	総復習問題演習(はりの変形)	1				
		15週	総復習	1				
		16週	期末試験					
		1週	異種材料からなるはり	2				
		2週	異種材料からなるはり	2				
後期	3rdQ	3週	曲げとねじりを受ける軸	3				
		4週	引張り・圧縮におけるひずみエネルギー	4				
		5週	せん断とねじりによるひずみエネルギー	4				

		1					1			
		6週	はりの	かひずみエネノ	レギー	4	4			
7週 問題演習							2, 3, 4			
		8週	中間語	式験						
		9週	カス	ティリアーノの	の定理		4			
		10週	カス	ティリアーノの	の定理の応用		4			
		11週	偏心在	苛重の作用する	る柱		5			
	1thO	12週	柱の層	並屈			6			
	+ti iQ	13週	拘束針	条件の異なる	主の座屈		6			
		14週	実際の	の柱の座屈			6			
		15週	問題》	寅習			4, 5, 6			
		16週	期末記	式験						
モデルコ	アカリキ	ユラムの)学習	内容と到達	目標					
分類		分野		学習内容の到達目標					到達レベル	授業週
					部材が引張や圧縮を	で受ける場合のひ	ずみエネルギーを計算できる		3	
専門的能力	分野別の 門工学	9 機械系	分野	野力学	部材が曲げやねじりる。)を受ける場合の	ひずみエネルギーを計算でき		3	
					カスティリアノのぼ きる。	定理を理解し、不	静定はりの問題など	に適用で	3	
評価割合				•					•	
			試	 験		課題提出合計		合計		
総合評価割合			80	80		20		100		
基礎的能力 0					0		0			
専門的能力			80)		20 100				
分野横断的	 能力		0			0		0		

新居浜工業高等専門学校		開講年度	平成29年度 (2	2017年度)	授業科目	流体機械
科目基礎情報						
科目番号	110504			科目区分	専門 / 必	修
授業形態	講義			単位の種別と単位数	数 履修単位:	: 1
開設学科	機械工学科			対象学年	5	
開設期	前期			週時間数	2	
教科書/教材	理工学社 流	体のエネルギー	・と流体機械			
担当教員 松田 雄二						
到達目標						

- 1.利用可能な流体エネルギーと設計上必要な流体エネルギーを見積り、有効活用する技術が理解できること 2.ポンプの分類と特性を理解し、遠心ポンプの揚程や動力の計算ができること 3.送風機の分類と特性を理解し、送風機の選定ができること 4.水車の種類と特徴を理解し、水車の出力計算と、水車の選定ができること 5.風車の種類と特徴を理解し、風車の出力計算ができること

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	設計上必要なエネルギーや流体から取り出せるエネルギーを見積もり、活用する技術を理解している。	 流体のエネルギーを見積もること ができる。 	 流体のエネルギーを、見積もるこ とも利用することもできない。
評価項目2	状況に応じたポンプ仕様を設計し 、エネルギープラント等に活用で きる。	ポンプの種類や特徴を理解し、設計仕様に必要な諸量を計算できる。	ポンプの種類や特徴、設計仕様に 必要な諸量の計算ができない。
評価項目3	状況に応じた送風機仕様を設計し 、エネルギープラント等に活用で きる。	送風機の種類や特徴を理解し、設計仕様に必要な諸量を計算できる。	送風機の種類や特徴、設計仕様に 必要な諸量の計算ができない。
評価項目4	状況に応じた水車仕様を設計し、 エネルギープラント等に活用でき る。	水車の種類や特徴を理解し、設計 仕様に必要な諸量を計算できる。	水車の種類や特徴、設計仕様に必 要な諸量の計算ができない。
評価項目5	状況に応じた風車仕様を設計し、 エネルギープラント等に活用でき る。	風車の種類や特徴を理解し、設計 仕様に必要な諸量を計算できる。	風車の種類や特徴、設計仕様に必 要な諸量の計算ができない。

学科の到達目標項目との関係

専門知識 (B)

教育方法等

概要	流体のエネルギー、ポンプ、送風機・圧縮機、水車、風車を取り上げ、流体から機械へ、機械から流体へのエネルギー の授受関係を理解する。
授業の進め方・方法	授業は、教科書と事例や模型等を参考に、原理・仕組みを理解すると同時に、演習によって流体機械を用いたエネルギープラントの設計に必要な知識を習得する。
注意点	

本科目の区分

授業計画

1又未 三 四	4			
		週	授業内容	週ごとの到達目標
		1週	流体のエネルギー	1,2
		2週	ポンプの概要と分類	1,2
		3週	ポンプの全揚程、水動力、軸動力、効率	1,2
		4週	遠心ポンプの構造と揚水原理、演習問題	1,2
	1stQ	5週	ポンプの比速度、キャビテーション、その他のポンプ 、演習問題	1,2
		6週	送風機の分類と概要	1,3
		7週	送風機の性能と選定、演習問題	1,3
 前期		8週	中間試験	
削捌		9週	1水力発電のしくみ、水車の種類と性能	4
		10週	ペルトン水車の設計計算、フランシス水車の設計計算	4
		11週	プロペラ水車、斜流水車、ポンプ水車	4
		12週	演習問題	4
	2ndQ	13週	風のエネルギー、風車の種類と性能、水平軸風車の設 計計算	5
		14週	垂直軸風車の設計計算、演習問題	5
		15週	期末試験	
		16週	流体エネルギー利用の現状と将来の展望	

モデルコアカリキュラムの学習内容と到達目標

分類 分野		分野	学習内容	学習内容の到達目標	到達レベル	授業週
			部品のスケッチ図を書くことができる。	4		
声明的华力	分野別の専	1616 L D == () m=	製図	ボルト・ナット、軸継手、軸受、歯車などの機械要素の図面を作成できる。	4	
専門的能力 分野別の専 門工学	機械光分野	機械系分野	熱流体	境界層、はく離、後流など、流れの中に置かれた物体の周りで生 じる現象を説明できる。	4	
				流れの中の物体に作用する抗力および揚力について説明できる。	4	

		土	抗力について理解し、抗力係数を用いて抗力を計算できる。 4					
		<u> </u>	易力について理解し	ノ、揚力係数を用い	て揚力を計算でき	る。	4	
評価割合	評価割合							
	試験	発表	相互評価	態度	ノート	その他	合計	-
総合評価割合	90	0	0	0	10	0	100)
基礎的能力	0	0	0	0	0	0	0	
専門的能力	90	0	0	0	10	0	100	
分野横断的能力	0	0	0	0	0	0	0	

新居浜工業高等	専門学校	開講年度	平成29年度 (2	017年度)	授業科	目	塑性加工学
科目基礎情報							
科目番号	110505			科目区分	専門	/ 必	修
授業形態	講義			単位の種別と単位数	数 履修	単位	: 2
開設学科	機械工学科			対象学年	5	5	
開設期	通年			週時間数	2		
教科書/教材	基礎からわか	る塑性加工	長田 修次、柳本	潤 共著 (コ	ロナ社)		
担当教員	廣田 直文						
到達目標							
1. 応力-ひずみ線図について理解できる 2. 鉄鋼材料一次品の製造方法を理解できる 3. 塑性加工の特徴を理解できる 4. 塑性加工に関係する専門用語を理解できる							
ルーブリック							
	理想的な到達レベルの目安			標準的な到達レベノ	レの目安		未到達レベルの目安

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	応力 – ひずみ線図について説明できる。	応力 – ひずみ線図について理解で きる。	応力 – ひずみ線図について理解できない。
評価項目2	鉄鋼材料一次品の製造方法を説明 できる。	鉄鋼材料一次品の製造方法を理解 できる。	鉄鋼材料一次品の製造方法を理解 できない。
評価項目3	塑性加工の特徴を説明できる。	塑性加工の特徴を理解できる。	塑性加工の特徴を理解できない。
評価項目4		塑性加工に関係する専門用語を理 解できる。	塑性加工に関係する専門用語を理 解できない。

学科の到達目標項目との関係

専門知識 (B)

教育方法等

概要	基礎となる応力、ひずみの定義から始まって、材料の塑性変形の特徴、塑性力学の基礎理論を理解し、習得する。その 後に、興行的に素材の製造法として広く用いられている曲げ、鍛造、圧延などの加工法、さらに、自動車や飲料缶など の身近な製品を製造する板材の成形加工法等、塑性加工の理論と実際を理解する。
授業の進め方・方法	「板書による講義形式で行う」
注意点	塑性加工学は、基礎と応用が結びついた学問であるが、基礎としては塑性力学、応用としては、素材の製造はもちろん、われわれに身近な製品の加工法を学ぶ学問である。 履修上の注意: 塑性加工法はあらゆる工業における素材の製造法、およびわれわれに身近な各種製品の加工法を工学的に、また学問的に学ぶ科目ですので、工学的基礎知識としても専門科目としても、極めて重要です。

本科目の区分

授業計画	画			
		週 授業内容 週		週ごとの到達目標
		1週	塑性加工の意義・種類と分類	1, 2, 3
		2週	金属材料の塑性変形と応力とひずみの定義法	1, 4
		3週	変形抵抗・降伏応力に影響する材質特性	1, 4
		4週	演習問題による復習	1, 2, 3, 4
	1stQ	5週	塑性力学の基礎理論として、応力と応力のつりあい条件、変形およびひずみ	1, 4
		6週	降伏条件、応力とひずみの関係	1, 4
		7週	演習問題による総復習	1, 4
 前期		8週	中間試験	
別知		9週	曲げ加工の種類、板材の曲げ変形、板のロール変形、 矯正、管・板材の曲げ変形	2, 3, 4
		10週	曲げ変形に関する初等理論	1, 4
		11週	鍛造加工の効果と分類	3, 4
	2ndQ	12週	鍛造加工の基礎	2, 3, 4
		13週	各種鍛造機械と鍛造作業方法	2, 3, 4
		14週	演習問題による総復習	1, 2, 3, 4
		15週	期末試験	
		16週	復習	1, 2, 3, 4
		1週	圧延の変形機構、影響要因と用語の定義	1, 3, 4
		2週	ロールに作用する力と圧延トルク、パワー	3, 4
		3週	圧延機の構造と圧延機の形式	3, 4
	3rdO	4週	薄板と厚板等の板圧延法と形状制御法	3, 4
	JiuQ	5週	形材の孔型圧延とユニバーサル圧延	2, 3, 4
後期		6週	棒・線および鋼管の圧延法	2, 3, 4
192,747)		7週	演習問題による総復習	2, 3, 4
		8週	中間試験	
		9週	引抜き加工法の変形機構・加工法と理論	3, 4
	4thQ	10週	押出し加工法の変形機構・加工法と理論	3, 4
	TuiQ	11週	せん断加工法の原理と加工法、形状精度確保法	3, 4
		12週	板の成形加工法の種類と変形機構	3, 4

	13週	深絞り加工法、引 ング加工法	長出し加工法、して	ごき加工法、スピニ	3, 4			
	14週	演習問題による総	総復習		3, 4			
	15週	期末試験						
	16週	復習						
モデルコアカ	モデルコアカリキュラムの学習内容と到達目標							
分類	分野	学習内容	学習内容の到達	 目標		到達	レベル 授業週	
評価割合								
	試験	発表	相互評価	態度	ポートフォリオ	その他	合計	
総合評価割合	100	0	0	0	0	0	100	
基礎的能力	0	0	0	0	0	0	0	
専門的能力	100	0	0	0	0	0	100	
分野横断的能力	0	0	0	0	0	0	0	

新居浜工業高等	工業高等専門学校 開講年度		平成29年度 (2	017年度)	授業科目	機械制御	
科目基礎情報	科目基礎情報						
科目番号	110506			科目区分 専門 / 必修		修	
授業形態	講義			単位の種別と単位数	数 履修単位	: 2	
開設学科	機械工学科			対象学年	5		
開設期	通年			週時間数	2		
教科書/教材	教科書/教材 「JSMEテキストシリーズ 制御工学」 日本機械学会						
担当教員	今西 望						
到達日煙							

|到连日慌

- 1.自動制御の概念が理解できる
 2.線形モデルを作成できる
 3.ラプラス変換を応用することができる
 4.システムをブロック線図で図示できる
 5.システムの周波数応答をベクトル軌跡で図示,解析できる
 6.システムの周波数応答をボード線図で図示,解析できる
 7.フィードバック制御システムが理解できる
 8.システムの安定性を理解し,判別できる
 9.システムの時間応答を図示し,過渡特性を解析できる
 10.システムの定常特性を求めることができる
 11.フィードバック制御システムの設計ができる

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	自動制御を理解できている	自動制御の概念が理解できる	自動制御の概念が理解できていない
評価項目2	任意の線形モデルを作成できる	線形モデルを作成できる	線形モデルを作成できない
評価項目3	自在にラプラス変換と逆変換を適	ラプラス変換を応用することがで	ラプラス変換を応用することがで
	応できる	きる	きない
評価項目4	任意のシステムをブロック線図で	システムをブロック線図で図示で	システムをブロック線図で図示で
	図示できる	きる	きない
評価項目5	システムの周波数応答をベクトル	システムの周波数応答をベクトル	システムの周波数応答を理解でき
	軌跡で図示,解析できる	軌跡で図示できる	ていない
評価項目6	システムの周波数応答をボード線	システムの周波数応答をボード線	システムの周波数応答を理解でき
	図で図示,解析できる	図で図示できる	ていない
評価項目7	フィードバック制御システムを組	フィードバック制御システムが理	フィードバック制御システムが理
	み上げることができる	解できる	解できていない
評価項目8	システムの安定性を理解し、判別できる	システムの安定性を理解できる	システムの安定性を理解できてい ない
評価項目9	システムの時間応答を図示し,過 渡特性を解析できる	システムの時間応答を図示できる	システムの時間応答が理解できて いない
評価項目10	任意のシステムの定常特性を求め	システムの定常特性を求めること	システムの定常特性が理解できて
	ることができる	ができる	いない
評価項目11	自在にフィードバック制御システ	フィードバック制御システムの設	フィードバック制御システムの設
	ムの設計ができる	計ができる	計ができない

学科の到達目標項目との関係

専門知識 (B)

教育方法等

概要	講義内容は3年のメカトロニクス基礎、4年のメカトロニクス応用からの発展的な内容になりますので,ブロック線図や伝達関数など基本的な部分をしっかりと復習しておくようにしてください.
授業の進め方・方法	基本的に講義形式で行い, 時より質疑応答を行う. また, レポートを定期的に出題する.
注意点	この科目は学修単位科目であるので、(90時間 - 講義時間)以上の自学自習を 必要とする。したがって、科目担当教員が課した課題の内、 {(90時間 - 講義時間) ×3/4} 時間以上に相当する課題提出がないと単位を認めない

本科目の区分

授業計画

		週	授業内容	週ごとの到達目標
		1週	制御の基礎概念(導入)	1
		2週	線形モデル(機械系)	2
		3週	システムの要素	2,3
	1.0+0	4週	伝達関数	2,3
	1stQ	5週	システムの応答	2,3,9
		6週	ブロック線図	4
		7週	線形モデル (機械系・流体系・電気系・複合)	2,3,4
前期		8週	中間試験	
		9週	周波数応答	5,6
		10週	周波数伝達関数	5,6
		11週	ベクトル軌跡	5
	2ndQ	12週	ベクトル軌跡の性質	5
		13週	ボード線図	6
		14週	基本システムの周波数応答(1)	6
		15週	基本システムの周波数応答(2)	6

		16週	期末記	 式験						
		1週	フィ-	- ドバック制	御システム		7			
		2週	外乱	(雑音)			7,8			
		3週	シスラ	ステムの安定性			8			
	3rdQ	4週	ラウス	ス・フルビッ	ツの安定判別法(ラワ	ウス)	8			
	3raQ	5週	ラウス	ス・フルビッ	ツの安定判別法(フルビッツ) 8		8			
	6週	ナイ	キストの安定	判別法		8				
	7週	ゲイン	ン余裕・位相	余裕		6,8				
後期		8週	中間記	式験						
1女别		9週	時間原	芯答			9,10			
		10週	過渡物	寺性(1次遅	h)		9			
		11週	過渡物	寺性(2次遅	h)		9			
	4thQ	12週	定常特	寺性			10			
	HuiQ	13週	制御	系設計			1,7,11			
		14週	ΡΙI	つ制御の設計			11			
		15週	補償				11			
		16週	期末詞	式験						
モデルコ	アカリキ	ニュラムの)学習	内容と到達	桂目標					
分類		分野		学習内容	学習内容の到達目標	<u> </u>			到達レベル	授業週
					自動制御の定義と種	類を説明できる	を説明できる。		4	
					フィードバック制御	の概念と構成要素を説明できる。		4		
					基本的な関数のラプラス変換と逆ラプラス変換を求めることができる。		4			
	/\	\ 			ラプラス変換と逆ラプラス変換を用いて微分方程式を解くことが できる。		くことが	4		
専門的能力	分野別σ. 門工学)等 機械系	分野	計測制御	伝達関数を説明できる。			4		
					ブロック線図を用い	用いて制御系を表現できる。		4		
					制御系の過渡特性について説明できる。		4			
					制御系の定常特性に	ついて説明でき	る。		4	
					制御系の周波数特性	について説明で	きる。		4	
					安定判別法を用いて	制御系の安定・	不安定を判別できる	0	4	
評価割合										
			試	験	レポート 合計		合計			
総合評価割	 合		80)		20		100		
基礎的能力	1		0			0		0		
専門的能力	1		80)		20	100			
分野横断的	能力		0			0		0		

지므포므	楚情報	110507		T	初日区公	古田 / ン/ム			
科目番号		110507 講義			科目区分	専門 / 必修			
授業形態 開設学科					単位の種別と単位数 対象学年	履修単位: 1	_		
<u>用政子科</u> 開設期		機械工学 後期	· <u>^</u>		<u>刘家子年</u> 週時間数		<u>5</u> 2		
_{刑 設}	7++		*入門(改訂版) 山田伸;	 志 監修	<u> 週時间数</u> (パワー社)	_ 2			
<u> </u>	(1/1)	谷口 佳文			(パワー社)				
			ζ						
到達目標	_								
2. 1自日 3. 1自日 4. 2自日	由度減衰振 由度強制振 由度自由振	動の運動方程 動の運動方程	5程式を導き、解析できる。 記式を導き、解析できる。 記式を導き、解析できる。 記式を導き、解析できる。						
ルーブ!	ノツク		7m+n+h++ 7m++ 2m++ 5m++		I#\\\\ 1\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
			理想的な到達レベルの目安		標準的な到達レベルの		未到達レ	ベルの目安	
評価項目:	1		1自由度非減衰振動の運 導出し、応用問題を解く きる。	動万桂式をことがで	1自由度非減衰振動の 導出し、基礎的な問題 ができる。		1自由度す とができ	ド減衰振動の間 ない。	問題を解くこ
評価項目2	2		1自由度減衰振動の運動 出し、応用問題を解くこ る。		1自由度減衰振動の運出し、基礎的な問題を できる。		1自由度派ができない	成衰振動の問題 い。	質を解くこと
評価項目:	3		1自由度強制振動の運動 出し、応用問題を解くこ る。	方程式を導 ことができ	1自由度強制振動の運 出し、基礎的な問題を できる。		1自由度強がでない。	強制振動の問題。 。	質を解くこと
評価項目。	4		2自由度自由振動の運動 導出し、応用問題を解く きる。	方程式をことがで	2自由度自由振動の通 導出し、基礎的な問題 ができる。		2自由度とができ	自由振動の問ない。	題を解くこ
学科の発	到達目標耳	頁目との関	· ·	<u>'</u>					
<u>, </u>			· · ·						
教育方法	· /								
概要		機械力学	」学は、機械の運転に伴う振動 の取扱う分野のうち、機械な	動を解析し、	振動を軽減あるいは挑	印制する対策を	考える分野	野である。本語	授業では、
		得するこ	ことを目的とする。						
授業の進	め方・方法	得するこ 講義は 項を理解 自学自	とを目的とする。 は、振動工学の基礎から始め した後、2自由度振動の解 間図のための問題プリントを配	て、1自由度 析へと発展さ 配布するので	要系の非減衰振動、減衰 なせてゆく。 で、問題を解いて授業内	表振動、強制振 内容を理解する	動の順に	進め、振動解	析の基礎事
授業の進る 注意点	め方・方法	得するご 講義は 項を理解 自学自 振動解析	とを目的とする。 は、振動工学の基礎から始め した後、2自由度振動の解 間割のための問題プリントを では運動方程式とその解法が	て、1自由度 析へと発展さ 配布するので 基礎となるの	要系の非減衰振動、減衰をせてゆく。 で、問題を解いて授業内で、微分方程式が基礎	表振動、強制振 内容を理解する	動の順に	進め、振動解	析の基礎事
注意点		得するご 講義は 項を理解 自学自 振動解析	とを目的とする。 は、振動工学の基礎から始め した後、2自由度振動の解 間図のための問題プリントを配	て、1自由度 析へと発展さ 配布するので 基礎となるの	要系の非減衰振動、減衰をせてゆく。 で、問題を解いて授業内で、微分方程式が基礎	表振動、強制振 内容を理解する	動の順に	進め、振動解	析の基礎事
注意点	の区分	得するご 講義は 項を理解 自学自 振動解析	とを目的とする。 は、振動工学の基礎から始め した後、2自由度振動の解 間割のための問題プリントを では運動方程式とその解法が	て、1自由度 析へと発展さ 配布するので 基礎となるの	要系の非減衰振動、減衰をせてゆく。 で、問題を解いて授業内で、微分方程式が基礎	表振動、強制振 内容を理解する	動の順に	進め、振動解	析の基礎事
注意点	の区分	得するご 講義は 項を理解 自学自 振動解析 係数 2 階	とを目的とする。 は、振動工学の基礎から始めていた後、2自由度振動の解析では、2自由度振動の解析である。 は、正動方程式とその解法がは運動方程式とその解法がは線形常微分方程式を復習しています。	て、1自由度 析へと発展さ 配布するので 基礎となるの	度系の非減衰振動、減衰をせてゆく。 で、問題を解いて授業P ので、微分方程式が基礎 どさい。	受振動、強制振 内容を理解する 登知識として必	動の順に	進め、振動解	析の基礎事
注意点	の区分	得するご 講義は項 項を理解 振動解析 係数2階	とを目的とする。 は、振動工学の基礎から始めていた後、2自由度振動の解析 とした後、2自由度振動の解析 では運動方程式とその解法が には運動方程式とその解法が には運動方程式を復習していた。 では変数のである。	て、1自由度 析へと発展さ 配布するので 基礎となるの	要系の非減衰振動、減衰性でゆく。 で、問題を解いて授業ので、微分方程式が基礎である。 適ご	表振動、強制振 内容を理解する	動の順に	進め、振動解	析の基礎事
注意点	の区分	得するご 講義理解 項を自学 振動解析 係数 2 階 週 1週	とを目的とする。 は、振動工学の基礎から始めていた後、2自由度振動の解析 した後、2自由度振動の解析 は運動方程式とその解法が は運動方程式を復習していた。 接続形常微分方程式を復習していた。 授業内容 振動の基礎	て、1自由度 析へと発展さ 配布するので 基礎となるの ておいてくだ	要系の非減衰振動、減衰をせてゆく。 で、問題を解いて授業ので、微分方程式が基礎である。 週ご	受振動、強制振 内容を理解する 登知識として必	動の順に	進め、振動解	析の基礎事
注意点	の区分	得するご 講義は 項を 自 振動解析 係数 2 階 週 1週 2週	とを目的とする。 は、振動工学の基礎から始めていた後、2自由度振動の解析といた後、2自由度振動の解析では運動方程式とその解法がは線形常微分方程式を復習しています。 授業内容振動の基礎 1自由度非減衰振動の運度	て、1自由度 析へと発展さ 配布するので 基礎となるの ておいてくだ 方程式	展系の非減衰振動、減衰をせてゆく。 で、問題を解いて授業P ので、微分方程式が基礎 でさい。 週ご 1	受振動、強制振 内容を理解する 登知識として必	動の順に	進め、振動解	析の基礎事
注意点	の区分	得するご 講義は解 項を自学帳 振動解析 係数 2 階 週 1 週 2 週 3 週	とを目的とする。 は、振動工学の基礎から始めてした後、2自由度振動の解析である。 はでは運動方程式とその解法がは は運動方程式とその解法が は減形常微分方程式を復習して 授業内容 振動の基礎 1自由度非減衰振動の運度。 種々の1自由度非減衰振動	て、1自由度 析へと発展さ 配布するので 基礎となるの ておいてくだ 方程式	度系の非減衰振動、減衰をせてゆく。 で、問題を解いて授業P Dで、微分方程式が基礎 ごさい。 週ご 1 1	受振動、強制振 内容を理解する 登知識として必	動の順に	進め、振動解	析の基礎事
注意点	の区分	得するご 講義理解 項を自学所 係数 2 階 週 1 週 2 週 3 週 4 週	とを目的とする。 は、振動工学の基礎から始めていた後、2自由度振動の解析といた後、2自由度振動の解析では運動方程式とその解法がは減形常微分方程式を復習して要素の基礎を関する。 「自由度非減衰振動の運度を関する。」 「自由度非減衰振動の運度を関する。」 「は、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	て、1自由度 析へと発展さ 配布するので 基礎となるの ておいてくだ 方程式	度系の非減衰振動、減衰 させてゆく。 で、問題を解いて授業P つで、微分方程式が基礎 ささい。 <u>週ご</u> 1 1 1	受振動、強制振 内容を理解する 登知識として必	動の順に	進め、振動解	析の基礎事
注意点	D区分 動	得するこ 環 環 調 振 動 の の の の の の の の の の の の の	とを目的とする。 は、振動工学の基礎から始めていた後、2自由度振動の解析習のための問題プリントを認定を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を	て、1自由度 析へと発展さ 配布するので 基礎となるの ておいてくだ 方程式	度系の非減衰振動、減衰 させてゆく。 で、問題を解いて授業P つで、微分方程式が基礎 ささい。 週ご 1 1 1 1	受振動、強制振 内容を理解する 登知識として必	動の順に	進め、振動解	析の基礎事
注意点	D区分 動	得するこ 講義理算 振動数 2 階 週 1週 2週 3週 4週 5週 6週	とを目的とする。 は、振動工学の基礎から始めていた後、2自由度振動の解けるのための問題プリントを認定は運動方程式とその解法が認識形常微分方程式を復習しています。 「自由度非減衰振動の運産を表し、表別では、表別では、表別では、表別では、表別では、表別では、表別では、表別では	て、1自由度 析へと発展さ 配布するので 基礎となるの ておいてくだ 方程式	度系の非減衰振動、減衰 させてゆく。 で、問題を解いて授業P Dで、微分方程式が基礎 ごさい。 りで、 1 1 1 1 2 2	受振動、強制振 内容を理解する 登知識として必	動の順に	進め、振動解	析の基礎事
注意点	D区分 動	得するこ 講義理算 振動 2 階 週 1 週 2 週 3 週 4 週 5 週 6 週 7 週	とを目的とする。 は、振動工学の基礎から始めてした後、2自由度振動の解けるのための問題プリントを認識形常微分方程式を復習しています。 「は運動方程式とその解法が認識形常微分方程式を復習しています。 「は重動方程式を復習しています。」 「は運動方程式を復習しています。」 「は運動方程式を復習しています。」 「は運動方程式を復習しています。」 「は運動の基礎」は、「自由度非減衰振動の運度を表現ます。」 「は、「は、「は、」に、「は、「は、」に、」に、「は、」に、「は、」に、「は、」に、」に、「は、」に、「は、」に、「は、」に、「は、」に、「は、」に、「は、」に、「は、」に、「は、」に、は、」に、	て、1自由度 析へと発展さ 配布するので 基礎となるの ておいてくだ 方程式	度系の非減衰振動、減衰 させてゆく。 で、問題を解いて授業P つで、微分方程式が基礎 ささい。 週ご 1 1 1 1	受振動、強制振 内容を理解する 登知識として必	動の順に	進め、振動解	析の基礎事
注意点	D区分 動	得するこ 講義理算 振動 2階 週 1週 2週 3週 4週 5週 6週 7週 8週	とを目的とする。 は、振動工学の基礎から始めてした後、2自由度振動の解け習のための問題プリントをでは運動方程式とその解法が認識形常微分方程式を復習しています。 「自由度非減衰振動の運度を重々の1自由度非減衰振動工ネルギによる解法をはである。 「自由度減衰振動の運度を対しています。」 「自由度振動の運度を対しています。」 「自由度振動の解決を対しています。」 「自由度振動の解決を使習を対しています。」 「自由度振動の解決を使習を使認されています。」 「自由度振動の解決を使認されています。」 「自由度振動の解決を使認されています。」 「自由度振動の解決を使認されています。」 「自由度振動の解決を使認されています。」 「自由度振動の解決を使認されています。」 「自由度振動の解決を使認されています。」 「自由度振動の解決を使認されています。」 「自由度振動の解決を使認されています。」 「自由度振動の解決を使認されています。」 「自由度振動の運産を使認されています。」 「自由度振動のではいます。」 「自由度能力を使産を使産を使産を使産を使産を使産を使産を使産を使産を使産を使産を使産を使産を	て、1自由度 析へと発展さ 配布するるので 基礎となくだ 方程式 程式	度系の非減衰振動、減衰 させてゆく。 で、問題を解いて授業P Dで、微分方程式が基礎 ささい。 週ご 1 1 1 2 2	受振動、強制振 内容を理解する 登知識として必	動の順に	進め、振動解	析の基礎事
注意点本科目の	D区分 動	得するこ 講義理学 振数 2 階 週 1週 2週 3週 4週 5週 6週 7週 8週 9週	とを目的とする。 は、振動工学の基礎から始めてした後、2自由度振動の解析である。 は、振動工学の基礎から始めではです。 はでである。 はでである。 はでである。 はでである。 はでである。 はでである。 はでいる。 はできないでは、できないでは、できないでは、できないでは、できないである。 はできないである。 は、にいるのでは、できないできないでは、できないできないできないできないできないできないできないできないできないできない	て、1自由度 析へと発展さ 配布するので 基礎となるの ておいてくだ 方程式 程式	度系の非減衰振動、減衰 させてゆく。 で、問題を解いて授業P Dで、微分方程式が基礎 ささい。 週ご 1 1 1 2 2 2	受振動、強制振 内容を理解する 登知識として必	動の順に	進め、振動解	析の基礎事
注意点本科目の	D区分 動	得するこ 講義理学 振動2 振動2 調 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週	とを目的とする。 は、振動工学の基礎から始めでした後、2自由度振動の解料である。 には運動方程式とその解法がは運動方程式とその解法が認いである。 接手内容には運動方程式を復習した。 「自由度非減衰振動の運度を重々の1自由度非減衰振動の工をが変による解法をは、1自由度減衰振動の運度方にである。」 「自由度減衰振動の運度が対数減衰率を対し、1をは、1をは、1をは、1をは、1をは、1をは、1をは、1をは、1をは、1をは	て、1自由度 析へと発展さ 配布するので 基礎となるの ておいてくだ 方程式 程式	度系の非減衰振動、減衰をせてゆく。 で、問題を解いて授業ので、微分方程式が基礎です。 1 1 1 1 2 2 2 2 3 3 3)	受振動、強制振 内容を理解する 登知識として必	動の順に	進め、振動解	析の基礎事
注意点本科目の	D区分 動	得するこ 環 環 調を自学析 係数 2 調 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週 11週 11週	とを目的とする。 は、振動工学の基礎から始めていた後、2自由度振動の解け習のための問題プリントを認定は運動方程式とその解法が誤決形常微分方程式を復習しています。 「自由度非減衰振動の運度を重々の1自由度非減衰振動の運度を重々の1自由度減衰振動の運度を重々の1自由度減衰振動が重度を対数減衰率を対しまます。 「自由度強制振動(力により、自由度強制振動(変位に、振動伝達率	て、1自由度さ 析へと発展でで 基礎となて 方程式 程式 る強制振動) よる強制振動	度系の非減衰振動、減衰 させてゆく。 で、問題を解いて授業的 つで、微分方程式が基礎 ごさい。 週ご 1 1 1 2 2 2 2 3 3 3)3	受振動、強制振 内容を理解する 登知識として必	動の順に	進め、振動解	析の基礎事
注意点本科目の授業計画	D区分 動	得することは 項 頭 振動数 2 階 退 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週 11週 112週	とを目的とする。 は、振動工学の基礎から始めてした後、2自由度振動の解けるのための問題プリントを認識形常微分方程式を復習しています。 「は運動方程式とその解法が認識形常微分方程式を復習しています。 「自由度非減衰振動の運度を重々の1自由度非減衰振動の運度方でである。」 「自由度減衰振動の運度方でである。」 「自由度減衰振動の運度方でである。」 「自由度減衰振動の運度方でである。」 「自由度減衰振動の運度方でである。」 「自由度減衰振動の運度方でである。」 「自由度強制振動の運動方でである。」 「自由度強制振動ので変しています。」 「自由度強制振動のでである。」 「自由度強制振動のでである。」 「自由度強制振動のでである。」 「自由度強制振動のである。」 「自由度強制振動のである。」 「自由度強制振動の運動方である。」 「自由度自由振動の運動方である。」 「「「「「「「「「」」」 「「「「」」 「「「」」 「「」」 「「」」	て、1自由度さ 析へと発展でで 基礎となて 方程式 程式 る強制振動) よる強制振動	度系の非減衰振動、減衰 させてゆく。 で、問題を解いて授業的 ので、微分方程式が基礎 ささい。 週ご 1 1 1 2 2 2 2 3 3 3 4	受振動、強制振 内容を理解する 登知識として必	動の順に	進め、振動解	析の基礎事
注意点本科目の	D区分 画 3rdQ	得することは 項 調整を 調整を 調整を 調整を 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週 11週 11週 11週 11週 11週 11週 11週 11週	とを目的とする。 は、振動工学の基礎から始めてした後、2自由度振動の解け習のための問題プリントを認識形常微分方程式を復習した。 接業内容振動の基礎 1自由度非減衰振動の運度を重々の1自由度非減衰振動工ネルギによる解法 1自由度減衰振動の運度方に種々の1自由度減衰振動が関連をある。 1自由度減衰振動の運度方に種々の1自由度減衰振動が関連をある。 1自由度強制振動(力により自由度強制振動(変位に振動伝達率 2自由度自由振動の運動方に種々の2自由度振動	て、1自由度さ 析へと発展でで 基礎となて 方程式 程式 る強制振動) よる強制振動	度系の非減衰振動、減衰 させてゆく。 で、問題を解いて授業の ので、微分方程式が基礎 ささい。 週ご 1 1 1 2 2 2 2 3 3 3)	受振動、強制振 内容を理解する 登知識として必	動の順に	進め、振動解	析の基礎事
注意点本科目の	D区分 画 3rdQ	得することは 項 調を自 無数 2 階 週 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週 11週 11週 11週 11週 11週 11週 11週 11週 11	とを目的とする。 は、振動工学の基礎から始めてした後、2自由度振動の解け習のための問題プリントを呼ば運動方程式とその解法が認識形常微分方程式を復習しています。 「は運動方程式とその解法が変別である。 「は運動方程式とその解法が変別である。」 「自由度非減衰振動の運度を重々の1自由度非減衰振動の運度を重々の1自由度減衰振動の運度方にである。」 「自由度強制振動のである。」 「自由度強制振動(方により、自由度強制振動(変位に、振動伝達率と自由度振動の運動方にである。」 「種々の2自由度振動を重複の2自由度振動を重複の2自由度振動	て、1自由度さ 析へと発展でで 基礎となて 方程式 程式 る強制振動) よる強制振動	度系の非減衰振動、減衰 させてゆく。 で、問題を解いて授業的 ので、微分方程式が基礎 ささい。 週ご 1 1 1 2 2 2 2 3 3 3 4	受振動、強制振 内容を理解する 登知識として必	動の順に	進め、振動解	析の基礎事
注意点本科目の授業計画	D区分 画 3rdQ	得することは 項 類 表 類 を は 類 の の の の の の の の の の の の の の の の の の	とを目的とする。 は、振動工学の基礎から始めてした後、2自由度振動の解け習のための問題プリントを認識形常微分方程式を復習した。 接業内容振動の基礎 1自由度非減衰振動の運度を重々の1自由度非減衰振動工ネルギによる解法 1自由度減衰振動の運度方に種々の1自由度減衰振動が関連をある。 1自由度減衰振動の運度方に種々の1自由度減衰振動が関連をある。 1自由度強制振動(力により自由度強制振動(変位に振動伝達率 2自由度自由振動の運動方に種々の2自由度振動	て、1自由度さ 析へと発展でで 基礎となて 方程式 程式 る強制振動) よる強制振動	度系の非減衰振動、減衰 させてゆく。 で、問題を解いて授業の ので、微分方程式が基礎 ささい。 週ご 1 1 1 2 2 2 2 3 3 3)	受振動、強制振 内容を理解する 登知識として必	動の順に	進め、振動解	析の基礎事
注意点本科目(2)	D区分 国 3rdQ 4thQ	得 環	とを目的とする。 は、振動工学の基礎から始めてした後、2自由度振動の解析では運動方程式とその解法が認識形常微分方程式を復習した。 「は運動方程式とその解法が認識形常微分方程式を復習した。」 「受業内容振動の基礎」は自由度非減衰振動の運度に種々の1自由度非減衰振動の運度を重々の1自由度減衰振動の運度方種々の1自由度減衰振動が対数減衰率。 「自由度強制振動(変位に振動伝達率」を自由度強制振動(変位に振動伝達率」を自由度振動の運動方に種々の2自由度振動 を関する。	て、1自由度さ 析へと発展でで 基礎となて 方程式 程式 る強制振動) よる強制振動	度系の非減衰振動、減衰 させてゆく。 で、問題を解いて授業の ので、微分方程式が基礎 ささい。 週ご 1 1 1 2 2 2 2 3 3 3)	受振動、強制振 内容を理解する 登知識として必	動の順に	進め、振動解	析の基礎事
注意点 本科目 授業計画 後期	D区分 国 3rdQ 4thQ	得講義理学 析際 週 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週 113週 113週 113週 115週 115週 115週 115週 115	とを目的とする。 は、振動工学の基礎から始めでした後、2自由度振動の解け習のための問題プリントを認識形常微分方程式を復習した。 「は運動方程式とその解法が認識形常微分方程式を復習した。」 「は運動方程式を復習した。」 「は運動方程式を復習した。」 「は運動方程式を復習した。」 「自由度非減衰振動の運度を重々の1自由度非減衰振動の運度方にである。」 「重々の1自由度減衰振動の運度方にである。」 「自由度強制振動(力により自由度強制振動(変位に振動伝達率と自由度強制振動の運動方にを重なの2自由度振動を重なの2自由度振動を重なの2自由度振動を重なの2自由度振動を重なの2自由度振動を重なの2自由度振動を重なの2自由度振動を重なの2自由度振動を重なの2自由度振動を重なの2自由度振動を重なの2自由度振動を重なの2自由度振動を関係を受ける。	て、1自由度されているだりを表するなって、 1自角をできないできませいできませい かいてくだい 大程式 おり はい	度系の非減衰振動、減衰 させてゆく。 で、問題を解いて授業的 ので、微分方程式が基礎 ささい。 週ご 1 1 1 2 2 2 2 3 3 3)	受振動、強制振 内容を理解する 登知識として必	動の順に	進め、振動解	析の基礎事
注意点本科目(2)	D区分 国 3rdQ 4thQ	得 環	とを目的とする。 は、振動工学の基礎から始めでした後、2自由度振動の解け習のための問題プリントを呼ば運動方程式とその解法が認識形常微分方程式を復習しています。 「は運動方程式とその解法が要素を関する。」 「自由度非減衰振動の運度を重々の1自由度非減衰振動の運度を重々の1自由度減衰振動の運度を対数減衰率を関試験を対象減衰率を対した。」 「自由度強制振動(方により、自由度強制振動(方により、自由度強制振動(方により、自由度強制振動(方により、自由度強制振動(変位に、振動伝達率と自由度自由振動の運動方を重々の2自由度振動を重々の2自由度振動を重々の2自由度振動を重なの2自由度振動を重なの2自由度振動を重なの2自由度振動を重なの2自由度振動を重なの2自由度振動を重なの2自由度振動を重なの2自由度振動を関する。	て、1自由度されて、1自用であるのでは、1自用であるのでは、1自用できるのでは、1自用できるのでは、1自用できるのでは、1自用できるののでは、1自用できる。これでは、1自用できる。これでは、1自用できるのののでは、1自用できるのののでは、1自用できるのののでは、1自用できるのののでは、1自用できるのののでは、1自用できるのののでは、1自用できるのののでは、1自用できるのののでは、1自用できるののでは、1自用できるのののでは、1自用できるのののでは、1自用できるののでは、1自用できるののでは、1自用できるののでは、1自用できるののでは、1自用できるののでは、1自用できるののでは、1自用できるのでは、1自用では、1自用では、1自用では、1自用では、1自用では、1ellでは、1e	度系の非減衰振動、減衰 させてゆく。 で、問題を解いて授業的 ので、微分方程式が基礎 ささい。 週ご 1 1 2 2 2 2 3 3 3)) 3 4 4 4	受振動、強制振 内容を理解する 登知識として必	動の順に	進め、振動解	析の基礎事
注意点 本科目 授業計画 後期	D区分 国 3rdQ 4thQ	得講義理学 析際 週 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週 113週 113週 113週 115週 115週 115週 115週 115	とを目的とする。 は、振動工学の基礎から始めてした後、2自由度振動の解け習のための問題プリントを関います。 「は運動方程式とその解法が認識形常微分方程式を復習した。 「は運動方程式とその解法を復習した。」 「自由度非減衰振動の運度を重々の1自由度非減衰振動の運度を重なの1自由度減衰振動の運度を要した。」 「自由度強制振動の運度を要して、大きないる。」 「自由度強制振動のでは、一、「は、一、「なって、」 「なって、一、「なって、一、「なって、」で、「なって、、」で、「なって、」で、「なって、」で、「なって、、」で、「なって、」で、「なって、、これ、いって、、これ、いって、、これ、いって、、これ、いって、これ、いって、、これ、いって、、これ、いって、、これ、いって、これ、いって、いって、これ、いって、いって、いって、いって、いって、いって、いって、いって、いって、いって	て、1自由度されている。 1自発のでは またいてくだい まんと さいてく だい また かいてく だい また かいてく だい また おいてく だい また おいてく だい また おいてく だい また おいてく だい また はい また	度系の非減衰振動、減衰 させてゆく。 で、問題を解いて授業的 ので、微分方程式が基礎 ささい。 週ご 1 1 1 2 2 2 2 3 3 3)	受振動、強制振 内容を理解する 登知識として必 との到達目標	動の順(こ)	進め、振動解本科3年で学	断の基礎事習した定数
注意点本科目は受験である。	D区分 国 3rdQ 4thQ	得講義理学 析際 週週 1週 3週 3週 4週 5週 3週 100 週 110 回 110	とを目的とする。 は、振動工学の基礎から始めてした後、2自由度振動の解析習のための問題プリントを認識形常微分方程式を復習した。 「は運動方程式とその解法が表別である。」 「は運動方程式を復習した。」 「は運動方程式を復習した。」 「は運動方程式を復習した。」 「は運動方程式を復習した。」 「は運動方程式を復習した。」 「は運動の基礎	て、1自由度されている。 1自自度では、 1自自度では、 1自自度では、 1自発のできません。 2のできません。 2のできません。 2を受ける 2を使ける 2を使りる 2を使りる 2を使ける 2を使りる 2を使ける 2を使りる 2を使ける 2を使りる 2を使りる 2を使ける 2を使りる 2を使りる 2を使りる 2を使りる 2を使りる 2を使りる	展系の非減衰振動、減衰をせてゆく。 で、問題を解いて授業ができる。 ので、微分方程式が基礎できる。 は、	展振動、強制振 内容を理解する 登知識として必 との到達目標 系の運動を説	動の順に記っている。要です。	進め、振動解本科3年で学 到達レベル4	断の基礎事習した定数
注意点 本科目 授業計画 後期	D区分 国 3rdQ 4thQ	得講義理学 析際 週週 1週 3週 3週 4週 5週 3週 100 週 110 回 110	とを目的とする。 は、振動工学の基礎から始めてした後、2自由度振動の解け習のための問題プリントをでは運動方程式とその解法が高級形常微分方程式を復習している。 「は運動方程式を復習している。」 「は運動方程式を復習している。」 「は運動方程式を復習している。」 「は運動方程式を復習している。」 「は運動方程式を復習している。」 「は運動方程式を復習している。」 「は運動方程式を復習している。」 「は運動の基礎」の1自由度非減衰振動の運度である。 「は動の重度を表現している。」 「は動になるの1自由度強制振動(かには、1自由度強制振動(変位に、振動伝達率 2自由度 自由度振動を重動の重動方で、種々の2自由度振動を重なの2自由度振動を関する。 「学習内容と到達目標を受されている。」 「学習内容」を関する。 「は動のを表現できます。」 「は動いる。」 「は動いる。」 「は動いる。」 「は表現できます。」 「は表現できます。」 「は表現できます。」 「は、表現できます。」 「は、まます。」 「は、まますます。」 「は、まますます。」 「は、まますます。」 「は、まますますます。」 「は、まますますますますます。」 「は、まますますますますますますますますますますますますますますますますますますま	てがいる はい	度系の非減衰振動、減衰をせてゆく。 で、問題を解いて授業ができる。 ので、微分方程式が基礎できる。 ので、微分方程式が基礎できる。 ので、微分方程式が基礎できる。 ので、微分方程式が基礎できる。 ので、微分方程式が基礎できる。	展振動、強制振り容を理解する 登知識として必 との到達目標 系の運動を説明	動の順に記っている。 要です。 ない できる できる。	進め、振動解本科3年で学	断の基礎事習した定数

評価割合

	試験	発表	相互評価	態度	ポートフォリオ	その他	合計
総合評価割合	80	0	0	0	0	20	100
基礎的能力	0	0	0	0	0	0	0
専門的能力	80	0	0	0	0	20	100
分野横断的能力	0	0	0	0	0	0	0

新居浜工業高等専門学校 開講年月		開講年度	平成29年度 (2	017年度)	授業科目	電気工学概論 2
科目基礎情報						
科目番号	110508	110508			専門 / 🖟	必修
授業形態	講義	講義		単位の種別と単位数	複 履修単位	ī: 2
開設学科	機械工学科		対象学年	5		
開設期	通年			週時間数	2	
教科書/教材	精選電気基礎	実教出版				
担当教員	粂野 紘範	·	·	·		
到達目標						

- 1.コンデンサの働きを理解し、静電容量・エネルギーを計算できること。 2.正弦波交流の特徴を表現し、交流電力を計算できること。 3.交流の基本回路を理解し、インピーダンスを計算できること。 4.三相交流の特徴を表現し、三相電力を計算できること。 5.電気機器の構造と特徴を表現できること。 6.整流回路とインバータの働きを説明できること。 7.電力輸送の仕組みを説明できること。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	コンデンサの働きを理解し、静電 容量・エネルギーを計算できる	コンデンサの働きを理解できる	コンデンサの働きを理解できていない
評価項目2	正弦波交流の特徴を表現し、交流 電力を計算できる	正弦波交流の特徴を表現できる	正弦波交流の特徴を理解できていない
評価項目3	交流の基本回路を理解し、インピ ーダンスを計算できる	交流の基本回路を理解できる	交流の基本回路を理解できていな い
評価項目4	三相交流の特徴を表現し、三相電 力を計算できる	三相交流の特徴を表現できる	三相交流の特徴を理解できていない
評価項目5	電気機器の構造と特徴を表現できる	電気機器の構造を表現できる	電気機器の構造を理解できていない
評価項目6	整流回路とインバータの働きを説 明できる	整流回路を説明できる。	整流回路とインバータの働きを理 解できていない
評価項目7	電力輸送の仕組みを説明できる	電力輸送を理解できている	電力輸送を理解できていない

学科の到達目標項目との関係

専門知識 (B)

教育方法等

概要	発電所でつくられた電気は、変圧器、送電線、配電線を経由して工場、ヒル、家庭へ送られ消費される。ここでは、交 流の取り扱い、電気機器の構造・特徴、電力輸送などを解説する。
授業の進め方・方法	

機械と同様に電気も産業の基盤である。電気で動く機械、電気を使用する装置は、工場だけでなく身近なところに多数 ある。電気の知識を習得することにより、将来、どのような分野を専攻しても、活躍の場がさらに拡がるだろう。 注意点

本科目の区分

授業計画

技耒 司世	쁴			
		週	授業内容	週ごとの到達目標
		1週	静電気と電界の復習	1
		2週	電界と電位	1
	1.10	3週	コンデンサの静電容量	1
		4週	コンデンサのエネルギー	1
	1stQ	5週	臨時試験	
		6週	正弦波交流の周期、周波数、角周波数	2
		7週	演習	
前期		8週	中間試験	
月リ パ カ		9週	瞬時値、最大値、位相	2
		10週	交流の実効値、ベクトル表示	2
		11週	交流の基本回路(R,L,C)、リアクタンス	3
	2ndQ	12週	ベクトル線図	3
	ZHUQ	13週	RL直列回路、インピーダンス	3
		14週	RC直列回路	3
		15週	RLC直列回路(1)	3
		16週	期末試験	
		1週	RLC直列回路(2)	3
		2週	RL並列回路	3
		3週	直列共振、共振の鋭さ	3
	3rdQ	4週	交流電力、力率、無効電力	2
後期	JaruQ	5週	三相交流と結線法	4
		6週	三相電力	4
		7週	演習	
		8週	中間試験	
	4thQ	9週	直流機電動機の構造・原理	5

		T								\neg
		10週	誘導電動機の構造	・回転磁界		5				
		11週	同期電動機	期電動機			5			
		12週	変圧器の構造と特	ー 圧器の構造と特性						
		13週	パワーエレクトロ							
		14週	電力需要と送電・	カ需要と送電・配電(電力の輸送)						
		15週	電気の安全			7				
		16週	期末試験							
モデルコ	アカリ	リキュラムの	学習内容と到達	目標						
分類		分野	学習内容	学習内容の到達目	票			到達レ/	ベル 授業週	
評価割合										
	i	試験	発表	相互評価	態度	ポートフォリオ	その他		合計	
総合評価割	合	80	0	0	0	0	20		100	
基礎的能力	(0 0		0	0	0	0		0	
専門的能力		80	0	0	0	0	20		100	
分野横断的	能力	0	0	0	0	0	0		0	

新居浜工業高等専門学校 開講年度 平成29年度		平成29年度 (2	1017年度)	授業科目	化学工学概論	
科目基礎情報						
科目番号	110509			科目区分	専門 / 必	修
授業形態	講義			単位の種別と単位数	履修単位:	1
開設学科	機械工学科		対象学年	5		
開設期	前期			週時間数	2	
教科書/教材	ベーシック化	ベーシック化学工学、橋本健治著(化学同人)				
担当教員	桑原 繁尚					
到達目標						
1. 反応速度式を理解し、反応速度式を用いて反応器の基本的な設計ができる。 2. 気を関係を理解し、蒸留の基本的な設計諸元を計算できる。						

- 三角図を使用した液-液抽出計算ができる。
 温度図表から、調湿計算ができること。乾燥の基礎理論を理解し、乾燥計算ができる。 粉体の粒径分布を読みとり、流体から粒子を分離する設計計算ができる。

J	レー	ゴ	IJ	11/	ク
,	レー	_	・ノ	ייי	ン

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	反応速度式と反応器形式から反応	反応器の形式の違いを理解し、設	反応器の形式による特徴が理解で
	器の設計計算ができる。	計計算ができる。	きない。
評価項目2	気液平衡関係から、単蒸留および	気液平衡関係から、連続蒸留計算	気液平衡図を読み取ることができ
	連続蒸留計算ができる。	ができる。	ない。
評価項目3	液液平衡の三角線図を用いて単抽	三角線図を読み、活用して単抽出	液液平衡の三角線図を読み取るこ
	出、多回抽出の計算ができる。	の計算ができる。	とができない。
評価項目4	湿度図表、乾燥特性曲線より調湿 ・乾燥操作の諸元を計算できる。	湿度図表の読取り、乾燥特性曲線 の読取りができる。	湿度図表、乾燥特性曲線を理解できない。
評価項目5	粒径分布曲線の作成、沈降分離、	粒径分布曲線が読みとれる、沈降	粒径分布が理解できない、沈降計
	ろ過分離の設計計算ができる。	分離計算ができる。	算ができない。

学科の到達目標項目との関係

専門知識 (B)

教育方法等

概要	化学工学における代表的な単位操作の基礎理論を学ぶことで、化学現象を表す平衡状態と物質移動論を理解し、代表的な単位操作について基本的な設計計算方法の習得めざす。
授業の進め方・方法	授業は講義と演習を並行して進め、必要に応じてレポート課題を課し、理解の程度を確認する。
注意点	

本科目の区分

授業計画

		週	授業内容	週ごとの到達目標
		1週	反応速度と反応器 反応速度式	1
		2週	反応速度と反応器 温度と反応速度	1
		3週	反応速度と反応器 反応時間	1
	1.c+O	4週	蒸留: 蒸気圧とラウールの法則	2
	1stQ	5週	蒸留: 気液平衡関係と蒸留操作の原理	2
		6週	蒸留: 単蒸留操作	2
		7週	蒸留: 連続蒸留操作	2
		8週	中間試験	
前期		9週	復習	1, 2
		10週	液液抽出: 液液平衡関係	3
		11週	液液抽出: 液液抽出装置とその操作法	3
		12週	調湿と乾燥: 湿度図表とその使い方	4
	2ndQ	13週	調湿と乾燥: 乾燥特性曲線と乾燥速度	4
		14週	流体からの粒子の分離 粒径分布	5
		15週	流体からの粒子の分離 沈降分離、ろ過分離	5
		16週	期末試験	

モデルコアカリキュラムの学習内容と到達目標 分類 分野 学習内容 学習内容

_, , , _, , ,									
分類 分野		分野	学習内容	学習内容の到達目標				到達レベル	授業週
評価割合	·····································								
	試験		発表	相互評価	態度	ポートフォリオ	その他	合計	
総合評価割合	80		0	0	0	0	20	100	
基礎的能力	0		0	0	0	0	0	0	
専門的能力	80		0	0	0	0	20	100	
分野横断的能力	0		0	0	0	0	0	0	

7/1/1		미국국	門学校	開講年度	平成29年度 (2	2017年度)	授	業科目	経営工学		
科目基	礎情報										
斗目番号	1	1	10511			科目区分	専門 / 必修				
受業形態	ŧ	諄	義			単位の種別と単	<u> </u>				
開設学科	l.	模				対象学年		5			
開設期			·····································		週時間数		2				
教科書/教	 数材	西	配布プリント(各講師のレジュメ)			1. =					
2011年 10日 10日 10日 10日 10日 10日 10日 10日 10日 10日			村信雄	. (/						
到達目			тэ пама								
1. 企業と 2. 企業に 3. 品質管	とは何かに こおける知 管理、安全	財戦略、	. 商業法務	印識が理解できる 务についての基礎 て基礎的な知識が現	印識が理解できる 里解できる						
レーフ	リック			T		T			T		
				理想的な到達レク		標準的な到達レ	ベルの	3安	未到達レベ	ルの目安	
企業とは 哉が理解	何かにつ できる	いて基礎	壁的な知	動規範について、 もに説明できる。		企業から求めら 動規範を挙げる	れる技術 ことが	桁者像や行 できる	企業から求 動規範を挙	められる技術 げることがで	が者像や行きない。
	ける知財 の基礎知			企業における知り ジメントに関する その必要性ととも	材戦略、技術マネ る項目について、 ちに説明できる。	企業における知 ジメントに関す とができる。			企業におけ ジメントに とができな	る知財戦略、 関する項目を い。	技術マネ を挙げるこ
品質管理 基礎的な	』、安全衛 知識が理	生管理に解できる	こついて		衛生管理の実践に ハて挙げ、各項目 きる。	品質管理・安全 必要な項目を挙 。				安全衛生管理 践に必要な項 きない。	
学科の 教養 (D)		票項目。	との関係	Ŕ							
教育方:	<u>法等</u>										
既要					企業における仕事		いて理	 解し、将来E	 自分が関わり	たい仕事を考	 えること
	め方・方	<u>></u>	「授業要目	とを目指す。 」に対応する教科 を課すので、必ず	 書および配布プリ "提出すること。	ントの内容を事前	うに読ん	でおくこと。	課題として	、授業の復習	習となる課
主意点		-	の科目は	:「環境と人間」「	- 技術者倫理」と関 ↑を知り活躍の場に	連がある。自分σ 対する理解を深め)強みを:)て、一	生かす(=し 回きりの人生	」たい仕事を 生の目標作り	する) ことか をしませんか	が成長・活 い。
本科目	の区分										
受業計	画										
X/NII		週	拇				調ブレ	の到達目標			
		1週			. 技術 老 像,行動拒	節/ガイグンフ	1				
		2週			技術者像・行動規範/ガイダンス		1,2				
		3週			マネジメントの特						
					マネジメントによ		1,2				
	3rdQ	4週		, ,			+ ' -				
		5週		• • • • • • • • • • • • • • • • • • • •	マネジメントの活		1,2				
		6週			所者に期待すること 	-	1				
	1	7週		経営者から見た技術		.10	1				
	-	8週			可と技術者の活躍の)場	1				
	1	9追]的財産(1)/知財			2				
	1	10)]的財産(2)/知財			2				
	1	113		1的財産(3)/特許			2				
	4thQ	12)	周 知]的財産(4)/特許	明細書作成演習		2				
	1010	13)	周 品	鉛質管理の基礎			3				
	1	14)	周 品	質マネージメント	トシステム		3				
	1	15		年末試験							
		16)	周 討	は験返却・復習			1,2,3				
Eデル	コアカリ	ノキュ	ラムの学 _{分野}	学習内容と到達 学習内容	:目標 学習内容の到達目	 標			=======================================	到達レベル	 授業週
_ <u></u>)類	東田	的能力 質化	共同教育	共同教育	技術者として、社、社会の期待に十分解できる。	会に対して有益な	☆価値を持 ・、存在の	是供するため の価値のある	りに存在し		
	力の実									<u> </u>	
専門的能		試験		グループ討議	レポート・小テ	態度	ポー	トフォリオ	その他	合計	
學門的能 平 価 割	合			1	スト		<u> </u>	トフォリオ			
專門的能 平 価割 総合評価	合 割合	80		10	スト 10	0	0	トフォリオ	0	100	
事門的能 评価事]: 総合評価 基礎的能	合 割合 流	80		10	スト 10 10	0	0	トフォリオ	0	100 100	
分類 專門的能 評価割 総合評価 基礎的能 専門的能	高 高 高 高 記 記 記	80		10	スト 10	0	0	トフォリオ	0	100	

新民 法		空声 明学 均	文 開講年	= 100	亚战20年度 / 2	0017年度\	t四	業 約日	工学実験 2
		等専門学校	x I形碑円	一反	平成29年度 (2	.U1/ 牛/支)	」打又	業科目	工士大衆 4
科目基礎科目番号	门月牧	110513				科目区分		専門 / 必	修
村田留亏 授業形態		実験				単位の種別と単	/☆*/h		
授業形態 開設学科		 夫駚 機械工学	机			対象学年	江女人	履修単位: 5	. 1.3
開設期		前期	-17-7			週時間数		前期:3	
教科書/教林	-	1.2.1.1.	2テキスト	(新居	浜高専・機械工学			כ.נאניה	
担当教員	ر.				二,平田 傑之,谷脇:	· · · ·	西望	金野 紘節	岡田 久夫
到達目標	<u> </u>	II/II			, Ш [[] [] [] [] []	/U/1/WE ///	<u>' </u>	17KIJ 1924-0	лон <i>У</i> (У)
1.実験テー 2.実験計画 3.計画に基 4.実験計画	·マにおける i(測定機器 づきグル・ iから理論,	器、記録デー ープで協力し	・夕表、実証に ノて実験を遂行	おける (デー	P容を正しく理解で プログラミングな -タ収集など)し、 ³ としてまとめられ	ど) を立て、実験 理論(予測)との比	準備が 較により	できること)考察でき	。 ること。
ルーブリ	ック		l-= 1- //			I			1,-,-
			理想的な到			標準的な到達レ			未到達レベルの目安
評価項目1			実験テーマ		ナる目的および内 できる	実験テーマにお 容を理解できる	ける目的	りおよひ内	実験テーマにおける目的および内 容を理解できない
評価項目2			実験計画を	:立て、	実験準備ができ	実験計画を立て	ることた	ができる	実験計画・準備ができない
評価項目3)との比較(こより	遂行し、理論(予測 考察ことができる	協力して実験を			協力して実験を遂行し、理論(予測)との比較により考察ことができない
評価項目4			実験計画かび考察をしれることが	ら理 ポー できる	侖, 実験結果およ トとしてまとめら る	実験計画から理 ポートとしてま できる	論, 実馴 とめられ	検結果をレ 1ることが	レポートをまとめられることができない
学科の到	達目標耳	頁目との関	係						
問題解決能	力 (C)								
教育方法	<u></u> 等								
概要		機械工学画を立てとする。	に関するテー 、実行するこ。 また、種々の	マ(目的 とで、 器具、	り、課題)を実施する 理論を深く理解する 装置の取扱い方を	るための実験計画 るとともに、実験 習得することも目	(テキス データ(標とする	トづくり) の整理法や る。	を行うことによって自らが企画・計 報告書作成法に習熟することを目標
授業の進め	方・方法	各テーマ	'について、実験	険計画	当教員のもとへ順道 (目的・理論・実施 出されない場合は	験方法の整理)30	実験を2 0%、レ	テった後、 ポート709	レポートを作成し提出する。 %で評価する。各テーマの平均を評価
注意点		工学実験 い。 理論や予	1でのテキス 測などをもと(トに相 こ、自	業服・安全靴を着別当するものを作る 対の考えをレポー 対意して下さい。	要領で、与えられ	たテー	マについて	自ら学ぶ姿勢がないと実験ができな
本科目の									
授業計画		1.	T				I		
		週	授業内容					の到達目標	E .
		1週	実験1回目				1,2,3,	4	
		2週	実験1回目						
		3週	実験2回目						
	1stQ	4週	実験2回目						
		<u>5週</u> 6週	実験3回目実験3回目						
		7週	実験4回目						
		8週	実験4回目						
前期		9週	実験5回目						
		10週	実験5回目						
		11週	実験6回目						
	2 12	12週	実験6回目						
	2ndQ	13週	実験7回目						
		14週	実験7回目						
		15週	レポート整理	B		-			
16週									
モデルコ	<u> アカリ</u> =	キュラムの	学習内容と	到達	目標				
分類		分野	学習内容		学習内容の到達目標				到達レベル 授業週
タリスター カラ					加工学実験、機械力学実験、材料学実験、材料学実験、材料に実験、流体力学実験、制御工学実験などを行い、			きる。	
評価割合					る。 				4
	1			レポ	i- h			合計	
総合評価割	 合			100				100	
								,	
基礎的能力)			0				0	

専門的能力	100	100
分野横断的能力	0	0

新居浜工業高等	 専門学校	開講年度	平成29年度 (2	2017年度)	授美	業科目	卒業研究
科目基礎情報		•					
科目番号	110514			科目区分	1	専門 / 必	
授業形態	実習			単位の種別と単位数	汝 丿	でです。 では、 では、 できる。 できる。 できる。 できる。 できる。 できる。 できる。 できる。	: 12
開設学科	機械工学科			対象学年	!	 5	
開設期	通年			週時間数		12	
教科書/教材	なし						
担当教員	吉川 貴士,谷	口 佳文,松田 雄	二,平田 傑之,谷脇	充浩,越智 真治,今西	望 ,多	杂野 紘範	
到達目標							
1.日々の作業・活動を記録し学習を蓄積していく習慣が身に付いていること。 2.与えられた課題に対して、その解決のために必要な情報を収集できること。 3.与えられた課題に対する自分なりの解決策を提案できること。 4.与えられた課題に対する解決案を実行できること。 5.研究活動の内容およびその成果について他人に分かりやすく説明できること。 6.研究活動の内容およびその成果について報告書にまとめることができること。							
ルーブリック							
	Đ	理想的な到達レイ	ベルの目安	標準的な到達レベルの目安			未到達レベルの目安
評価項目1	l E	日々の作業・活動を作業ノートや 日誌等に記録し、考察を加えて整 理できる。		日々の作業・活動を作業ノートや 日誌等に記録することができる。			日々の作業・活動を作業ノートや 日誌等に記録することができない 。
評価項目2	(を収集し、内容を こ、それに対する	題を解決するために必要な情報 収集し、内容を理解するととも それに対する自らの考察をま めることができる。		課題を解決するために必要な情報 を収集し、内容を理解できる。		課題を解決するために必要な情報 を収集できない。または収集した 情報の内容を理解できない。
評価項目3	,	与えられた課題に対する解決策を 、論理的かつ具体的手順を含めて 提案することができる。		与えられた課題に対する解決策を 提案できる。		解決策を	与えられた課題に対する解決策を 提案できない。
評価項目4		与えられた課題に対する解決案を 、自ら試行錯誤を経ながら実行で きる。		与えられた課題に対 実行できる。	付する	解決案を	与えられた課題に対する解決案を 実行できない。
評価項目5		研究成果を口頭で発表し、討論に おいて論理立てた説明ができる。		研究成果を口頭で発表し、討論に おいて受け答えができる。			研究成果を口頭で発表できるが、 討論において受け答えができない 。
評価項目6	(研究成果につい ^っ ハて、論理立てが 書にまとめるこ。	て、図表などを用 こ記述により報告 とができる。	研究成果について、図表などを用 いて報告書にまとめることができ る。		などを用 とができ	研究成果について、図表などを用いて報告書にまとめることができない。
学科の到達日標項目	ヨレの関係						

学科の到達目標項目との関係

問題解決能力 (C) コミュニケーション能力 (E)

教育方法等

MHUMT	
概要	研究内容は、高専5年間の集大成にふさわしいものとする。基本的な研究の推進力、発想力、設計製作能力、日程管理 能力、協調作業能力および得られた成果を説明する能力を身につけることを目的とする。
授業の進め方・方法	これまでに修得してきた専門知識と実験技術を基礎として、与えられたテーマについて、問題点の発掘から解決まで自主的に取組み研究を行う。 1) 希望するテーマに関する研究内容の理解度や熱意に基づき指導教員を決定する。 2) 作業ノートを準備し、毎回の作業内容、検討内容や結論および次回の検討課題を書く。 3) 作業ノートをもとに指導教員の助言を受けながら、計画的に目標を達成して行く。 4) 理解を深めるためと説明能力を身につけるため、年に2回クラス全体での発表会を行う。研究分野: 1) 電子回路の分野 2) メカトロニクスの分野 3) パワーエレクトロニクスの分野 4) 通信工学の分野 5) 医用工学の分野 6) 情報工学の分野 7)電力の分野 8) 計測工学の分野 9) 半導体工学の分野
注意点	(1) 本科5年間の学習の集大成の科目である。 (2) 研究の目的、方法の理解と同時に、自主的に研究を遂行してもらいたい。 (3) 発表会や報告書作成を通して、プレゼンテーション能力と文章表現力の向上に心がけてほしい。 指導教員の指導の下、関連科目の学習を行うとともに、常日頃から研究に関連した内容を学習する習慣を身につけること。

本科目の区分

145 344 = 1	_
THY THE T	曲

授業計画	4	T ₁ -	I result is a	
		週	授業内容	週ごとの到達目標
		1週	ガイダンスと配属の決定	
		2週	研究テーマに関する演習・設計製作・ゼミ・試問	
		3週	同上	
	1 c+O	4週	同上	
	1stQ	5週	同上	
		6週	同上	
前期		7週	同上	
削粉		8週	同上	
		9週	同上	
		10週	同上	
	2540	11週	同上	
	2ndQ	12週	同上	
		13週	同上	
		14週	同上	

		15ì	周	同上								
		16ì	固	中間夠	発表会							
		1週		研究	テーマに関する	5演習・設計製作・	ゼミ・試問					
		2週		同上								
		3週		同上								
	3rdQ	4週		同上								
	JiuQ	5週		同上								
		6週		同上								
		7週		同上								
後期		8週		同上								
1274)		9週		同上								
		10ì	周	同上								
		11ì		同上								
	4thQ	12ì	周	同上								
	rang	13ì		同上								
		14ì		同上								
		15ì			発表会							
		16ì	•			こ問題点の解決、報	告書の完成					
モデルコ	アカリキ	-그 -	ラムの	学習	内容と到達	.目標						
分類			分野		学習内容	学習内容の到達目標				到達レベル	授業週	
		分野別の工 機械系 学実験・実 【実験 習能力 習能力			機械系【実	実験・実習の目標と				4		
	分野別の			分野		災害防止と安全確保			できる。_	4		
				字実験・実 【i 習能力 習				・実	験実習】	レポートの作成の位	上方を理解し、実	践できる。
専門的能力						実験の内容をレポ- る。	-トにまとめるこ	とができ、口頭でも	説明でき	4		
		専門的能力 の実質化 PBL教育		育	PBL教育	各種の発想法や計画立案手法を用いると、課題解決の際、効率的、合理的にプロジェクトを進めることができることを知っている。				3		
						事象の本質を要約・整理し、構造化(誰が見てもわかりやすく)できる。				3		
	汎用的抗	技能	汎用的技能		能 汎用的技能	複雑な事象の本質を整理し、構造化(誰が見てもわかりやすく)できる。結論の推定をするために、必要な条件を加え、要約・整理した内容から多様な観点を示し、自分の意見や手順を論理的に展開できる。				3		
						工学的な課題を論理的・合理的な方法で明確化できる。				3		
分野横断的 能力						公衆の健康、安全、文化、社会、環境への影響などの多様な観点から課題解決のために配慮すべきことを認識している。				3		
	総合的な 習経験と 造的思考	(学 (創 (計)	創「習経験と創		総合的な学 習経験と創 造的思考力	クライアントの要求を解決するための設計解を作り出すプロセス 理解し、設計解を創案できる。さらに、創案した設計解が要求を 解決するものであるかを評価しなければならないことを理解する。 クライアントの要求を解決するための設計解を作り出すプロセス を理解し、設計解を創案できる。さらに、創案した設計解が要求 を解決するものであるかを評価しデザインすることができる。				3		
										3		
評価割合												
	試馬			発	表	相互評価	取組状況	報告書	その他	合計	†	
総合評価割	合 0			20)	0	60	20	0	100)	
基礎的能力	0			0		0	0	0	0	0		
専門的能力	0			0		0	0	0	0	0		
分野横断的能力 0				20)	0	60	20	0	100)	

新居江	兵工業高等	等専門学校	交 開講年度 平成29年度 (2	2017年度)	授業科目	 伝熱工学	
		יו ררורי.		1017 1/2)			
4日番号	LIDTK	110515		科目区分	専門 / 必修	7	
<u>- 1 日 日 3 -</u> 受業形態		講義		単位の種別と単位数	履修単位:		
設学科		機械工学	· 科	対象学年	5		
計設期		後期		週時間数	2		
科書/教	材						
当教員		下村 信息	進				
引達目標							
.各移動用 .熱物質科	彡態単体で、 多動を理解し	. さらに複合 し、エネルキ	8形態の概要が説明できること。 合での伝熱量が計算できること。 ぎ移動量が計算できること。 なが理解でき、伝熱量が計算できること	o			
レーブリ	Jック						
			理想的な到達レベルの目安	標準的な到達レベルの	D目安	未到達レベルの目安	
陌項目1			熱移動の3形態を理解し、その概 要を式化して概要説明ができる	熱移動の3形態の概要	要説明ができ	熱移動の3形態の概要説明ができ ない	
平価項目2	!		3 形態の伝熱基礎式を適用して単体での各種計算ができ、複合時の熱通過の式を適用して計算ができる	3 形態の伝熱基礎式を 体での各種計算ができ		3形態の伝熱基礎式を適用して単 体での各種計算ができない	
平価項目3	1		物質移動を伴う沸騰・凝縮伝熱の 伝熱計算ができる	物質移動を伴う沸騰・ 概要が説明できる	・凝縮伝熱の	物質移動を伴う沸騰・凝縮伝熱の 概要が説明できない	
			熱交換器の伝熱を対数平均温度差 を用いて計算ができる	単純な熱交換器の伝素 温度差を用いて計算が		単純な熱交換器の伝熱計算ができ ない	
学科の至	J達目標 ^I	頁目との関	月 係				
門知識 ((B)						
效育方法	法等						
既要		論では、 本的な計 事前学習	別体は熱エネルギーを持っており、物体 熱移動の基本的な三つの形態すなわち 算問題を解く能力を身に付ける。 乳:本科4年で学習した「熱力学」の復	、伝導、対流、放射にで	ると、熱エネル ついて基礎的な	レギーの移動がおこる。伝熱工学特 公知識を習得して、実際の伝熱の基	
受業の進め	か方・方法	履修上 <i>σ</i>	1:専攻科 「伝熱特論」「熱工学」 分注意:伝熱工学に関する基礎用語を正 てください。そして問題を解く場合、そ	しく理解し、使用する の内容を簡単な図で表り	物性値についる して視覚的に5	ては概略の大きさが認識できるよう 里解できるように努めることが必要	
注意点		履修上σ	習:本科4 年で学習した「熱力学」の復 目:専攻科 「伝熱特論」「熱工学」)注意:伝熱工学に関する基礎用語を正 こください。そして問題を解く場合、そ	しく理解し、使用する特	物性値についる して視覚的に理	ては概略の大きさが認識できるよう 理解できるように努めることが必要	
体科目σ	区分						
受業計画	1						
		週	授業内容	週ご	との到達目標		
		1週	伝熱序論、熱伝導の基礎理論	127700	の基本形態を	理解し、各形態における伝熱機構を	
		2週	1次元定常熱伝導			 よび熱伝導率を説明できる。	
		3週	熱通過	平板	および多層平	板の定常熱伝導について、熱流束、を計算できる。	
	3rdQ	4週	フィン効率	対流		定常熱伝導について、熱流束、温度	
	ادام	5週	対流伝熱の理論	ニュ	ニュートンの冷却法則および熱伝達率を説明できる。		
		6週	強制対流熱伝達(1)		自然対流と強制対流、層流と乱流、温度境界履 境界層、局所熱伝達率と平均熱伝達率を説明で		
		7週	強制対流熱伝達(2)			円管内の流れ、円管群周りの流れた 達関係式を用いることができる。	
	後期		中間試験		115		
				自然対流と強制対流、層流と乱流、温度境 境界層、局所熱伝達率と平均熱伝達率を訪			
)期		9週	自然対流熱伝達		層、局所熱伝	達率と平均熱伝達率を説明できる。	
绑		9週	自然対流熱伝達	境界 熱物 と	層、局所熱伝 質移動を理解	達率と平均熱伝達率を説明できる。 し、エネルギ移動量が計算できる。	
				境界 熱物 と 熱物 と	層、局所熱伝 質移動を理解 質移動を理解	流、層流と乱流、温度境界層と速度 達率と平均熱伝達率を説明できる。 し、エネルギ移動量が計算できるこ し、エネルギ移動量が計算できるこ	

ı	エデリコアカレ	Jキュラムの学習内容と到達目標
ı	モナルコアカウ	ノイエフムの子首内合と到達日標

放射伝熱

熱交換器(1)

熱交換器(2)

期末試験

12週

13週

14週

15週

16週

4thQ

分類	Ę	到達レベル 授業週	劉内容 学習内容の到達目標	授業週	
----	---	-----------	-----------------	-----	--

単色ふく射率および全ふく射率を説明できる。

熱交換器に関する基本的な概念が理解でき、伝熱量が 計算できること

熱交換器に関する基本的な概念が理解でき、伝熱量が 計算できること

	分野別 <i>の</i> 専 門工学	^享 機械系分野	, 熱流体 無原	伝熱の基本形態を理解し、各形態における伝熱機構を説明できる。				4	後1		
				フーリエの法則および熱伝導率を説明できる。				4	後2		
				平板および多層平板の定常熱伝導について、熱流束、温度分布、 熱抵抗を計算できる。				4	後3		
				対流を伴う平板の定常熱伝導について、熱流束、温度分布、熱通 過率を計算できる。				4	後4		
声明的纱力				ニュートンの冷却法則および熱伝達率を説明できる。				4	後5		
専門的能力 				自然対流と強制対流、層流と乱流、温度境界層と速度境界層、局所熱伝達率と平均熱伝達率を説明できる。				4	後5		
				平板に沿う流れ、円管内の流れ、円管群周りの流れなどについて 、熱伝達関係式を用いることができる。				4	後7		
				黒体の定義を説明できる。				4	後12		
				プランクの法則、ステファン・ボルツマンの法則、ウィーンの変位則を説明できる。				4			
				単色ふく射率およて	バ全ふく射率を説明	できる。		4	後12		
評価割合											
	試験発表			相互評価	態度	ポートフォリオ	その他	合	<u> </u>		
総合評価割合	ì 80	0		0	0	0	20	10	0		
基礎的能力	0	0		0	0	0	20	20			
専門的能力	80	0		0	0	0	0	80			
分野横断的能	力 0	0		0	0	0	0	0			