| Ak | ash | i College | | | anical a
m Eng | | lectror
ing | nic | Year 2024 | | | 4 | | | | |-----------------------------|----------------------------|---|------------|------------------------|-------------------|-------|----------------|--------|-----------|------|-------|-----|-----|---|--------------| | De | par | tment Goals | | | | | | | | | • | Col | ırc | | | | | Class | Hours p | er Wee | k | | | | | | Divisio | | Co
e
Ca | ui S | Course Title | Cours
e | Credit | Credit | Adv. | 1st Y | | | Adv. | 2nd Y | | | Instru | n in | | Cat | eg | Course Title | Code | Type | S | 1st | T _a | 2nd | 1.0 | 1st | 100 | 2nd | 1.5 | ctor | Learni
ng | | | | | | | | 1Q | 2Q | 3Q | 4Q | 1Q | 2Q | 3Q | 4Q | | | | Ge
ne
ral | Co
m
pu
lso
ry | Ethics for Engineers | 6001 | Acade
mic
Credit | 2 | | | 2 | | | | | | | | | Ge
ne
ral | Co
m
pu
lso
ry | Global Studies | 6002 | Acade
mic
Credit | 2 | 2 | | | | | | | | ARAK
AWA
Hirono
ri | | | Ge
ne
ral | El
ec
tiv
e | Geophysics | 6003 | Acade
mic
Credit | 2 | | | 2 | | | | | | YOKO
YAMA
Masah
iko | | | Ge
ne
ral | El
ec
tiv
e | Introduction to Nano
Materials Design | 6004 | Acade
mic
Credit | 2 | 2 | | | | | | | | NAKA
NISHI
Hirosh
i | | | Ge
ne
ral | El
ec
tiv
e | Culture and
Communication | 6005 | Acade
mic
Credit | 2 | 2 | | | | | | | | INOUE
Hideto
shi | | | Ge
ne
ral | El
ec
tiv
e | Overseas Training | 6006 | School
Credit | 2 | 2 | | 2 | | | | | | | | | Sp
eci
ali
ze
d | Co
m
pu
lso
ry | Creative Faculty
Development | 6007 | School
Credit | 2 | | | 4 | | | | | | NAKA
NISHI
Hirosh
i | | | Sp
eci
ali | Co
m
pu | Engineering Topics for
Advanced Course
Students | 6008 | Acade
mic
Credit | 2 | | | 2 | | | | | | WATA NABE Moriyo shi,HI RAISH I Toshih iro,NA KANIS HI Hirosh i,NOM URA Hayat o, | | | Sp
eci
ali
ze
d | Co
m
pu
lso
ry | Engineering
Presentation I | 6009 | School
Credit | 1 | 2 | | | | | | | | SUYA
MA
Taikei,
TAKED
A
Naho | | | Sp
eci
ali
ze
d | Co
m
pu
lso
ry | Industrial Materials | 6010 | Acade
mic
Credit | 2 | 2 | | | | | | | | MORIS
HITA
Tomo
hiro,
,TAKE
DA
Naho,
HIRAI
SHI
Toshih
iro | | | Sp
eci
ali
ze
d | El
ec
tiv
e | Information
Processing | 6011 | Acade
mic
Credit | 2 | 2 | | | | | | | | INOUE
Kazun
ari,SU
YAMA
Taikei | | | Sp
eci
ali
ze
d | El
ec
tiv
e | Analytical Mechanics | 6012 | Acade
mic
Credit | 2 | 2 | | | | | | | | NAKA
NISHI
Hirosh
i | | | Sp
eci
ali
ze
d | El
ec
tiv
e | Inclusive Design | 6013 | Acade
mic
Credit | 2 | 2 | OTSU
KA
Takehi
ko,IW
ATA
Naoki,
OKAM
URA
Hideki | |-----------------------------|----------------------------|--|------|------------------------|---|-----|---| | Sp
eci
ali
ze
d | Co
m
pu
lso
ry | Off-Campus Practical
Training | 6014 | School
Credit | 2 | 2 2 | , | | Sp
eci
ali
ze
d | Co
m
pu
lso
ry | Preliminary Research
Studies | 6015 | School
Credit | 4 | 4 4 | | | Sp
eci
ali
ze
d | El
ec | System Control
Engineering | 6016 | Acade
mic
Credit | 2 | 2 | KAMI
Yasus
hi | | Sp
eci
ali
ze
d | El
ec
tiv
e | Advanced
Instrumentation
Engineering | 6017 | Acade
mic
Credit | 2 | 2 | SHI
Fengh
ui | | Sp
eci
ali
ze
d | El
ec
tiv
e | Random Signal
Analysis | 6018 | Acade
mic
Credit | 2 | | INOUE
Kazun
ari | | Sp
eci
ali
ze
d | El
ec
tiv
e | Advanced
Electromagnetics | 6019 | Acade
mic
Credit | 2 | | | | Sp
eci
ali
ze
d | El
ec
tiv
e | Advanced Strength of
Materials | 6020 | Acade
mic
Credit | 2 | | MORIS
HITA
Tomo
hiro | | Sp
eci
ali
ze
d | El
ec
tiv
e | Production Systems | 6021 | Acade
mic
Credit | 2 | 2 | OHMO
RI
Shiget
oshi | | Sp
eci
ali
ze
d | El
ec
tiv
e | Energy Technology I | 6022 | Acade
mic
Credit | 2 | | | | Sp
eci
ali
ze
d | El
ec
tiv
e | Tribology | 6023 | Acade
mic
Credit | 2 | | KATO
H
Takahi
ro | | Sp
eci
ali
ze
d | El
ec
tiv
e | Advanced Electrical
Circuits | 6024 | Acade
mic
Credit | 2 | | HOSO
KAWA
Atsuis
hi | | Sp
eci
ali
ze
d | El
ec
tiv
e | Advanced Heat
Transfer | 6025 | Acade
mic
Credit | 2 | | KUNI
MINE
Kanji | | Ge
ne
ral | El
ec
tiv
e | Environmental
Science | 6026 | Acade
mic
Credit | 2 | | WATA
NABE
Moriyo
shi,HI
RAISH
I
Toshih
iro | | Sp
eci
ali
ze
d | Co
m
pu
lso
ry | Engineering
Presentation II | 6027 | School
Credit | 1 | | HIRAI
SHI
Toshih
iro,KU
NIMIN
E
Kanji | | Sp
eci
ali
ze
d | Co
m
pu
lso
ry | Research Studies | 6028 | School
Credit | 8 | 8 8 | | | |-----------------------------|----------------------------|------------------------------------|------|------------------------|---|-----|-------------------------------|--| | Sp
eci
ali
ze
d | El
ec
tiv
e | Mechatro-system | 6029 | Acade
mic
Credit | 2 | | SEKIM
ORI
Daisuk
e | | | Sp
eci
ali
ze
d | El
ec
tiv
e | Computational
Mechanics | 6030 | Acade
mic
Credit | 2 | 2 | KUNI
MINE
Kanji | | | Sp
eci
ali
ze
d | El
ec
tiv
e | Energy Technology II | 6031 | Acade
mic
Credit | 2 | | TANA
KA
Seiichi | | | Sp
eci
ali
ze
d | El
ec
tiv
e | Strength and Fracture of Materials | 6032 | Acade
mic
Credit | 2 | | MORIS
HITA
Tomo
hiro | | | Sp
eci
ali
ze
d | El
ec
tiv
e | Optoelectronics
Devices | 6033 | Acade
mic
Credit | 2 | | SUYA
MA
Taikei | | | Sp
eci
ali
ze
d | El
ec
tiv
e | Algorithms | 6034 | Acade
mic
Credit | 2 | | HAMA
DA
Yukihir
o | | | Sp
eci
ali
ze
d | El
ec
tiv
e | Advanced Electronic
Circuit | 6035 | Acade
mic
Credit | 2 | | TERAS
AWA
Shinic
hi | | | Sp
eci
ali
ze
d | El
ec
tiv
e | Mathematical
Informatics | 6036 | Acade
mic
Credit | 2 | | HAMA
DA
Yukihir
o | | | Sp
eci
ali
ze
d | El
ec
tiv
e | Optimization Design | 6037 | Acade
mic
Credit | 2 | | SHI
Fengh
ui | | | Sp
eci
ali
ze
d | El
ec
tiv
e | Micromachine | 6038 | Acade
mic
Credit | 2 | | MATS
UZUK
A
Naoki | | | Д | ıkashi Co | ollege | Year | 2024 | | | ourse
Title | Ethics for Engineers | | |--|---|--|---|---|--|---|--|--|--| | Course | Informa | tion | · | - | | • | | | | | Course Co | | 6001 | | | Course Categor | ry | General / | Compulsory | | | Class For | mat | Lecture | | | Credits | | Academic | Credit: 2 | | | Departme | ent | | cal and Electronic | System | Student Grade | | Adv. 1st | | | | Term | | Engineer
Second 9 | Semester | | Classes per We | oek | 2 | | | | Textbook | and/or | | | | · · · · · · · · · · · · · · · · · · · | | | | | | Teaching
Instructor | Matérials | | ト編: 1はしめての | 工学倫理」、昭和堂 | and Printed ma | iteriais | | | | | | Objectiv |
es | | | | | | | | | (1) Under
(2) Under
(3) Have
(4) Devel
understar | rstand the
rstand wha
sufficient l
op the abi
nding and | characteris
at ethical iss
knowledge
lity to devis
knowledge | sues engineers mof the important se effective solution of (1) to (3). | nay face in their da
social systems rela | y-to-day work.
Ited to engineers
cal issues that e | s when
ngineer | dealing w
s will enco | ineers have in response to them. ith the above-mentioned issues. ounter, based on the | | | Rubric | | 304.57 | | a to state, and pro- | | | | | | | | | | Ideal Level | | Standard Level | | | Unacceptable Level | | | Achievem | ent 1 | | Fully understa | s of an engineer's
ethical | Understand the of an engineer's ethical respons | e charac
s job ar | nd their | Do not fully understand the
characteristics of an engineer's job and their ethical responsibilities. | | | Achievem | ent 2 | | Fully understa | nd what ethical
ers may face. | Understand wh engineers may | | cal issues | Do not understand what ethical issues engineers may face. | | | Achievement 3 | | | | t knowledge of social systems ineers. | Have knowledg important socia to engineers. | | | Do not have knowledge of the important social systems related to engineers. | | | | | | Fully have the effective solut issues that en encounter. | ability to devise
ions for ethical
gineers will | Have the ability to devise effective solutions for ethical issues that engineers will encounter. | | | Do not have the ability to devise effective solutions for ethical issues that engineers will encounter. | | | Assigne | d Depar | tment Ob | ojectives | | | | | | | | Teachin | g Metho | d | | | | | | | | | Outline | | technolo
their exp
course w
achievin | gy is used by hig
pertise. This responding
will examine the s
g it, and how to | hly trained engine
onsibility is now be
pecific details of the
deal with that. | ers who have a in
ecoming more im
is responsibility | respons
portan
that en | sibility to s
t, and soc
igineers be | chnology. This science and ociety to use it properly based on ial interest is growing, too. This ear, what problems may arise in | | | Style | | of the cla | ass content, their | vill be held in a lecture style. At the end of each class, students should write and submit a summary ss content, their opinions, etc. and this will be evaluated as a small report. In for this course is Omota. | | | | | | | Notice | | guarante
assignme
accident
the class | rse's content will amount to 90 hours of study in total. These hours red in classes and the standard self-study time required for pre-study ent reports. The class will use videos, newspaper articles. etc., and it is and corporate morals. Reference materials and other materials are . Therefore, we would like students to show interest in areas other who miss 1/3 or more of classes will not be eligible for a passing gi | | | | y / review, and completing
ake many examples from recent
introduced as appropriate during
than their specialty field. | | | | Charact | eristics | | Division in Le | | | | <u>, </u> | | | | | Learning | , | ☐ Aided by I | | ☑ Applicable to | o Remo | te Class | ☐ Instructor Professionally
Experienced | | | Course | Dlan | | | | | | | | | | Course | 1011 | | Theme | | | Goals | | | | | | | 1st | Why engineering Why is it necessa engineers to lear between engineer social backgroun by the engineerii | ethics?
ary for those who a
rn ethics? Clarify the
ers and ethics throud,
the codes of eth
ng academic societ
n their significance | aspire to be ne links ugh today's ethics based on today's social backgroun code of ethics. | | | | | | 2nd | 3rd | 2nd | Deal with the spathe most famous | e Challenger accide
ace shuttle Challen
s case in engineerin
sions made by the
e organization. | ger accident, and | of the | Understand the characteristics and relation of the decisions made by the engineers an executives. | | | | 2nd
Semeste
r | Quarter | 3rd | Following the pre
Challenger accidences
responsibilities e | e Challenger disast
evious class, use thent as a guide and
ngineers have for
management fund | ne case of the consider what making | Understand the responsibilities and abiliti required of engineers for organization rismanagement. | | | | | | ۷ | 401 | Use the JCO criti consider the sigr that have support industry, the characteristics are the characteristics. | CO criticality accid cality accident as a difference of improvented the Japanese allenges facing ther lengage with then | an example to
ement activities
manufacturing
n, and how | | stand the s
rement act | significance and challenges of
tivities. | | | | 5th | | The Tokaimura JCO cr
Following the previous
criticality accident to d
which collective organ
how technicians should
safety and quality. | class, use the JCO | | tics of group thinking and
o deal with it and secure | | | |----------------------|--------|------|--|---|---|--|--|--| | | 6th | | Whistleblowing 1 Discuss the purpose of whistleblower protection | f the recently introduced
on system, criticisms of the
relationship between this | Acquire knowledge of protection system, ar | the whistleblower and understand its issues. | | | | | 7th | | part of their efforts to | reasing number of
lished help desks, etc. as
enhance their compliance
trend's significance in the | Understand what nee
ensure proper organiz | ds to be kept in mind to
zational behavior. | | | | | 8th | | Product Liability Act
Review the details of t
Act—which is said to b
engineers—and discus
engineers to establish
belief. | wledge of the Product
me able to use it as a | | | | | | | 9th | | Intellectual properties Confirm the significance of the patent, copyright, and other systems for technology development, and examine the issues, etc., facing them that accompany information technology development, etc. Acquire knowledge of intellectual proper and understand their significance in manufacturing. | | | | | | | | 10th | | Bhopal, India—the big
history—as an examplincreasing problems as | nemicals factory accident in
gest industrial accident in
e to discuss the further
asociated with overseas
globalization progresses. | Acquire knowledge of industrial activities. | Acquire knowledge of the issues faced in overseas industrial activities. | | | | | 11th | | that there is a need fo
account that technolog
related to the interacti | class, examine the fact
r engineers to take into
gy development is deeply
on between
ire, history, and thoughts, | | g of the previous class and
ds for overseas industrial | | | | 4th
Quarter | 12th | | | es of the Door Project, | | | | | | | 13th | | Based on the previous engineers also have the engineers, and that it | | Understand that in order to understand and use technology effectively, it is necessary to properly understand and communicate technology ideas. | | | | | | 14th | | technology developme
power struggles and d | political aspect to new
int that gives birth to new
iscrimination, whereas
attempt to democratize it. | Understand the conce
the systems necessar | ept of universal design and
y for achieving it. | | | | | 15th | | had a variety of impaction information society an | opments by engineers have
ts in sectors such as
d medical care.
lation that engineers shoul | and modern society a | onship between engineers
nd what their place in it | | | | | 16th | | No final exam | | | | | | | Evaluation Met | hod ar | nd V | Veight (%) | , | | | | | | | | Fina | l Report | Short
Reports & Presentation | CBT of ethics for researcher | Total | | | | Subtotal | | 60 | | 30 | 10 | 100 | | | | Basic Proficiency | | 60 | | 30 | 10 | 100 | | | | Specialized Proficie | | 0 | | 0 | 0 | 0 | | | | Cross Area Proficie | ncy | 0 | | 0 | 0 | 0 | | | | Akashi Coll | eae | Year | 2024 | | Course | Global Studies | | |--|---|---|---|---|--|--|--| | | | rear | 2021 | | Title | Global Studies | | | Course Information | 6002 | | | Course Category | General | / Compulsory | | | Class Format | Lecture | | | Credits | | c Credit: 2 | | | Department | | and Electronic | System | Student Grade | Adv. 1st | | | | Term | First Semest | | | Classes per Week | 2 | | | | Textbook and/or
Teaching Materials | Hideki Tarur | moto, Underst | anding Internation | al Sociology, 2nd | ed. | | | | Instructor | ARAKAWA H | lironori | | | | | | | Course Objectives | 5 | | | | | | | | (1) Possess internatio
(2) Understand the cu
(3) Understand and co
(4) Understand and e
(5) Understand the fu
(6) Be able to delve d
fieldwork, and prepara
(7) Be able to engage | irrent interna
onsider the fo
xplain the co
ndamentals
eeply into iss
e presentatio | ational situation
uture of the 2
ncepts of race
of
cross-borde
sues of interes
ans and papers | on that is in flux.
1st century and the
e and nation.
er societies.
st through the stud
s based on the resi | e new internationally of the internation | · | arry out research, including | | | Rubric | | | | | | | | | | E | xcellent | | Good | | Insufficient | | | Achievement 1 | | Possess the influalities of a g | ternational
lobal engineer. | Almost have the in
qualities of a glob | | Inability to possess the international qualities of a global engineer. | | | Achievement 2 | ii | Inderstand the
nternational s
lux. | e current
ituation that is in | Understand the cuinternational situal a state of flux. | urrent
Ition that is in | Inability to understand the current international situation that is in flux. | | | Achievement 3 | 2 | 21st century a | d consider the
nd the future of
ational society. | Able to consider was required to undersconsider the 21st the future of the rinternational socies. | stand and
century and
new | Cannot understand and reflect on the 21st century and the future of the new international society. | | | Achievement 4 | c | Inderstand an concepts of ether at ion. | d fully explain the
nnicity and | Almost understanthe concepts of et nation. | d and explain
hnicity and | Cannot understand and explain the concepts of ethnicity and nation. | | | Achievement 5 | | Inderstand the | e fundamentals of societies. | Almost understan-
fundamentals of t
societies. | | Cannot understand the fundamentals of transnational societies. | | | Achievement 6 | ii
t
ii
ii | Through students' own study of international relations, be able to delve deeply into issues of interest, conduct research, including fieldwork, and prepare presentations and papers based on the results of that research. | | Almost can carry including fieldwork write a presentation thesis based on the research. | k, and can
on and a | Cannot carry out research, including fieldwork, and prepare a presentation or thesis based on the results of that research. | | | Achievement 7 | | Be able to disc
ssues. | uss various global | Almost can discus global issues. | s and debate | Cannot discuss global issues. | | | Assigned Departn | nent Objec | ctives | | | | | | | Teaching Method | | | | | | | | | Outline | the basic co
internationa
to acquire the | ncepts of soci
I society and i
ne knowledge | al science and inte
independently rese
of global issues ne | rnational sociology
arch, present, and | , students wi
discuss the ters and resea | society, and after understanding
Il select a topic related to
opic. The objective is for students
archers, and to actively cultivate
approach society. | | | Style | issues that a
theme based
conduct reso
the results of
their own re | arise from tim
d on the textb
earch, includir
of their resear
esearch as wel | e to time. After the
look or reference b
ng fieldwork and su
ch and ultimately v | e lecture on interna
ook in which he/sh
urveys (even online
write a thesis. In th | ational social
ne is intereste
e) if possible.
ne presentatio | presentations on various global
issues, each student will choose a
ed, delve deeply into it, and
Students are required to present
on, students will be evaluated on
discourse, so preparation for | | | Notice | The total an
guaranteed
presentatior
social condit
presenter is
they ask in r
textbook for
Lectures wil
Students wh | nount of study in class, preparametric and the assicions. Student required to presponse to the each present is a given in Each of miss 1/3 or | vime for this cour
aration, and review
gned paper. "Globa
s are expected to a
repare a resume fo
e presentation. Th
ation. Proactive pa
English, with Japan
more of classes w | v, and the standard
al Studies" is a disc
approach class with
or his/her topic, an | d self-study ti
sipline that is
a daily inter
d the audiend
sure to read
stial. | nich is the sum of the study time
me required to prepare the
constantly changing according to
est in current affairs. Each
the will be graded on the questions
the relevant sections of the | | | Characteristics of | Class / Di | vision in Le | arning | Γ | | | | | ☑ Active Learning | | Aided by IC | T | ☑ Applicable to R | emote Class | ☐ Instructor Professionally
Experienced | | | 0 5 | | | | | | | | | Course Plan | Τ | | | T _ | | | | | Theme Goals | | | | | | | | | | | What is Clobal Studios? | | |----------------|---------|---|--| | | 1st | How international societies are created and why we need a theory of international relations. | To fully understand the differences between the natural and social sciences, which are usually studied, and the international community. | | | | MDGs and SDGs | | | | 2nd | Focuses on new ways of setting goals in the international community and considers international cooperation. | Understand the new international sustainable development goals and the role of Japan in the industrial world. | | | | Contemporary International Political Economy
International Politics | Understand the basic mechanisms of international | | | 3rd | Students will learn about economics and the actual international financial crisis and examine it in light of the market and legal system. | politics and the international economy, which are closely related to the industry. | | | | Security, International Cooperation, and National Interests | Understand the relationship between the state | | | 4th | Students will learn about the transformation of the international community and the resocialization of the concept of security, and examine and discuss the relationship between the state and the international community. | Understand the relationship between the state and the international community, and be able to articulate this understanding in their own discourse. | | 1st
Quarter | | International Sociology (Migration Issues and the EU) (1) | Understand the current situation of immigration in | | | 5th | Each student will present a case study of immigration policy in the U.S. and various issues in the EU, and deepen their awareness of these issues through discussion and other means. | the U.S. and Europe, and be able to formulate one's own opinions on the pros and cons of immigration policies. | | | | International Sociology (Migration Issues) (2) | | | | 6th | Students will present various issues of immigration in the former Soviet Union, Germany, and the UK based on each case study. The discussion will be held on the problems and the way forward. | Understand various problems occurring in various countries, including refugee issues, and be able to consider the relationship between the state and its people. | | | | Quizzes and assigned reports | | | | 7th | To confirm the discourse in Global Studies and to test the understanding of various students on each of the issues. Provide guidance on the progress and content of the assigned reports related to each student's presentation | Understand the importance of knowing what each student is interested in in the international community and expressing it in writing. | | | | • | | | | 8th | Students will present on political, historical, and economic issues in East Asia (China, Taiwan, and the Korean Peninsula). Each student will also discuss and debate the geographical proximity | Understand geopolitical issues in East Asia, which is geographically close to Japan. | | | | Issues in Asia (2) | | | | 9th | Each student will present a paper on various issues in Southeast Asia and Oceania, including actual surveys. | To understand Southeast Asia and Oceania in general, with which we have many academic exchanges. | | | 10th | Issues in Asia (3) To encourage consideration of international society from the perspective of Okinawa. The faculty will also report on field research conducted by the faculty on ethnic issues in South Asia and the current state of happiness surveys in Bhutan, the Land of Happiness, and consider national strategies. | Understand the geopolitical role of Okinawa, a crossroads of civilizations. Understand geopolitical issues in South Asian countries, including Bhutan. | | | 44.1 | Challenges to Development, Poverty, and Discrimination (1) | Understand that Japan has been actively involved | | 2nd
Quarter | 11th | Each student will present in-depth case studies from Nepal, Thailand, and Cambodia and discuss the pros and cons of development. | in development in Southeast Asia and South Asia, including the reasons for this. | | | | Challenges to Development, Poverty, and Discrimination (2) | | | | 12th | Recent examples of gender in South Asia, development in Africa and Latin America will be used to examine what international development should look like. We will also deepen our understanding of JICA, the actual Japanese government development organization. | Understand that the elimination of poverty is one of the most urgent issues in the SDGs, and think about what each student can do as an industrialist to solve this problem. | | | | The 21st Century and the New International | | | | 13th | Society (1) The latest discourses on globalization and its paradoxes will be presented and examined through presentations and discussions. | Understand globalism, localism, and globalization, and have knowledge of specific corporate
movements and social movements. | | | Quarter | 2nd 3rd 4th 1st Quarter 5th 6th 7th 9th 10th 2nd Quarter 11th 12th | Now international relations. | | | | 14th | The 21st Century
Society (2)
The course will ex
contemporary inte
understanding of | amine issues of te | errorism in | Able to understand the reality of international terrorism and the current situation. Understand what measures countries are taking to deter such terrorism. | | | | |-----------------------|------------------|----------------------|---|---|---|---|------------|-------|--| | | | | The 21st Century
Society (iii) The reality of envivil be learned fro
environmentally a
relationship betweenvironmental iss
internationally wil | ronmentally cons
m the current situ
dvanced countries
sen industrial peo | cious behavior
uation in
s, and the
ole and the | Understand the various discourses on global studies that have been presented. To be able to have an opinion on how to deal with international issues as an industrialist. | | | | | | | 16th | Final Examination | | A final exam and a final report will be | | | | | | Evaluation | on Me | ethod and \ | Weight (%) | | | | | _ | | | | | Assignments
Exams | & Presentation | Peer Evaluation | Attitude
(attendance
and questions
asked in class) | Portfolio | Other/Quiz | Total | | | Subtotal | | 50 | 20 | 0 | 20 | 0 | 10 | 100 | | | Basic Skills | | | 10 | 0 | 20 | 0 | 0 | 55 | | | Specialized
Skills | | | 0 | 0 | 0 | 0 | 10 | 25 | | | Cross Field
Skills | ross Field 10 10 | | | 0 | 0 | 0 | 0 | 20 | | | А | Akashi College Course Information | | | Year | 2024 | | | Course
Title | Geophysics | | |---|--|--|---|---|--|---|--|---|--|--| | Course | Informa | tion | | | | | | | | | | Course Co | ode | 6003 | | | | Course Catego | ry | General / | ' Elective | | | Class Form | mat | Lecture | | | | Credits | | Academi | Credit: 2 | | | Departme | ent | Engineer | ring | d Electronic | System | Student Grade | | Adv. 1st | | | | Term | | Second 9 | Seme | ster | | Classes per We | eek | 2 | | | | Textbook
Teaching | | Printed r | nater | ials | | | | | | | | Instructor | r | YOKOYA | MA M | asahiko | | | | | | | | (1) Learn seismic wobservation (2) Learn described (3) Under topograph volcanic e | raves, georon equipm about how in (1). By rstand the ruptions. | observatio
magnetism,
ent.
v the Earth
doing this,
concept of
ng so, learn | , theri
's inte
complate
the b | mal flow, etcernal structur
prehensively
tectonics an
pasic knowle | c.) and understar
re, surface phend
understand the
d the relationshi
dge for consideri | nd their meaning
omena, and histo
solid Earth syste
p between them
ng the global en | . Also
bry hav
m.
and the
vironm | understand
ve been int
ne movemenent and di | related to the solid Earth (gravity, d the basic principles of erpreted using the observations ent of the Earth's layers and sasters such as earthquakes and chieve these goals. | | | Rubric | | | | | | | | | | | | | | | Ide | eal Level | | Standard Leve | l | | Unacceptable Level | | | Achievem | ent 1 | | Ful | lly understar
echanism for
vsical proper | nd the
estimating the
ties of objects
vation results. | Understand the estimating the properties of o observation re- | physic
bjects | cal | · · | | | Achievem | ent 2 | | ob: | sérvation evi | standing of the | Understand whobservation every modern understarth is estimated. | idence
standir | the
ng of the | Do not understand what kinds of observation evidence the modern understanding of the Earth is estimated on. | | | Achievem | ent 3 | | ph
ear
er | lly understar
enomena su
rthquakes ar
uptions throu
led plate tec | ch as
nd volcanic
agh the concept | Understand na
such as earthq
volcanic erupti
concept of plat | uakes
ons th | and
rough the | Do not understand natural phenomena such as earthquakes and volcanic eruptions through the concept called plate tectonics. | | | Assigne | d Depar | tment Ob | jecti | ives | | | | | | | | Teachin | g Metho | d | | | | | | | | | | Outline | | currently
quantitie
of the m
physical
equipme | rse will have lectures on how the structure and properties of the Earth (mainly the solid Earth) are y understood. Since the purpose of geophysics is to capture the Earth quantitatively using physical es such as gravity and heat, the main purpose of this course is to understand the physical properties laterials that make up the Earth, and explain the basic properties and observation techniques of each quantity. It will also explain the laws of physics and basic structures used in the observation ent. It will be taught by a faculty member who is investigating the magnetic properties of deep-sea at obtained in core drilling at Academia Sinica in Taiwan. | | | | | | | | | Style | | Classes a | es are held in a lecture style. iaison for this course is Takeuchi. | | | | | | | | | Notice | | This cou
guarante
assignme | rse's content will amount to 90 hours of study in total. These hours include the learning time eed in classes and the standard self-study time required for pre-study / review, and completing ent reports. The course plan may change. Lessons are serial, not standalone. | | | | | | | | | Charact | eristics o | of Class / | Divi | sion in Le | arning | | | | | | | □ Active | Learning | | | Aided by IC | Т | ☑ Applicable t | o Rem | note Class | ☑ Instructor Professionally Experienced | | | | DI- | | | | | | | | | | | Course | rian
 | | T1 | | | | <u>.</u> | | | | | | | 1st | Earth
Expla
overv
Introd | se guidance ,
(1)
in, as guidar
view. | / The shape and
nce, the course p
ption of the Eart
nes. | policy and | of "ge
devel | rstand the | role played by the academic field
and the role that physics
ays in understanding the Earth's
e. | | | | | 2nd | Expla
shape | in the definit
es for the Ea | ze of the Earth (2
tions of the curre
rth (Earth ellipso
the basics of po | ently recognized
oid and geoid), | | Understand the basics of positioning us geometry. | | | | | 3rd
Quarter | 3rd | Earth | iń what grav
's mass and | rity means, by sh
density obtained
neaning of gravit | d by using it. | struct | | v to estimate the Earth's internal
he laws and observed values of
s on it. | | | | | 4th | with 9 | in the conce | introduce exam | d its relationship
ples of crustal | | | concept of isostasy and the fithe Earth's gravity that is related | | | | | 5th | Expla
the m | nic waves
in the nature
nethods for s
tures using t | e of seismic wave
surveying underg
hem. | es, and explain
pround | and h | | characteristics of seismic waves
mate earthquake information | | | | | 6th | The interior structure of the Earth (
Introduce the larger structure of the
interior, which has been estimated
seismic wave analysis. | e Éarth's | Understand the p
survey and the m
interior structure | rinciples of a seismic refraction ethod for estimating the Earth's that uses it. | | |---|--------------|----------|--|---|--|--|--| | | | 7th | The interior structure of the Earth (
Introduce the subterranean structure
Earth's surface layer, which has bee
mainly using seismic wave analysis. | ré of the
en estimated | survey and the m | rinciples of a seismic reflection
ethod for estimating the shallow
t's structure that uses it. | | | | | 8th | Earth heat
Explain
what is the source of heat in
Earth, and show the calorimetric dis
the surface layer of the Earth. | | the state of the E | neaning of heat in physics and
arth's interior that can be
ne calorimetric distribution on | | | | | 9th | Geomagnetism
Explain the magnetic distribution or
surface and how geomagnetism wa
Furthermore, explain magnetic ano | Understand the c
understanding "W | auses of geomagnetism by
/hat does magnetism mean?" | | | | | | 10th | Rock magnetism and paleomagnetis
Explain the mechanism for rocks be
magnetized and introduce the magnetion the past that have been investit. | coming
netism shifts | Understand the n
geomagnetic info | nechanism that records past rmation in rocks. | | | | | | Continental drift Introduce the classic continental dri Wegener. Also explain the continen restoration by paleomagnetism that a revival of continental drift theory. | riginal information for
theory," its interpretations, and
the continental drift using current | | | | | 1 | th
uarter | 12th | The spreading of the seafloor Explain seafloor's topography and u structure and the relationship betweenomaly distribution in the ocean alof seafloor spreading. | een magnetic | Understand the hypothesis that associates geomagnetic records with continental drift. | | | | | | 13th | Plate tectonics (1)
Explain the concept and movement
the shape their boundaries as the b
tectonics. | called plate tector | nderstand the original meaning of the concept
lled plate tectonics and its difference from
ntinental drift theory. | | | | | | 14th | Plate tectonics (2)
Use plate tectonics to explain the m
the Earth's layers (earthquakes, vol
orogeny, etc.) | | | natural phenomena such as
volcanic activities can be
ate motions. | | | | | | Plate tectonics (3) Introduce the properties of hotspots the difference between relative and motions. Furthermore, explain the o plate motions. | absolute plate | Understand how mechanism of the | plate motions work within the entire Earth. | | | | | 16th | Final exam | | | | | | Evaluation | n Meth | od and V | Veight (%) | | • | | | | | | | Exercise | Examination | | Total | | | Subtotal | | | 30 | 70 | | 100 | | | Basic Proficiency | | | 30 | 70 | | 100 | | | Specialized I | Proficien | су | 0 0 | | | 0 | | | Cross Area I | Proficien | су | 0 | 0 | | 0 | | | | | | | | | | | | А | kashi Co | ollege | Year | 2024 | | | | Introduction to Nano
Materials Design | | |--|--|---|---|--|---|--|-------------------------|---|--| | Course | Informa | tion | | | | | | | | | Course Co | ode | 6004 | | | Course Categor | ry | General / | Elective | | | Class Forr | mat | Lecture | | | Credits | | Academic | Credit: 2 | | | Departme | ent | Mechanic
Engineeri | al and Electronic | System | Student Grade | | Adv. 1st | | | | Term | | First Sem | - | | Classes per Week 2 | | | | | | Textbook | | Handouts | | | , | | • | | | | Teaching
Instructor | | | SHI Hiroshi | | | | | | | | Instructor | Objectiv | | חווטטווו | | | | | | | | Objectives
Evaluation
nanomate
Evaluation
ideas to o | s are to:
n 1: Under
erials design
n 2: Deepe | rstand the va
in through the
one's und
aly through o | he lectures.
lerstanding of quexercises and a | uantum mechanics presentation. | and develop pre | esenta | tion skills i | applying the laws to
in expressing one's opinions and
es in one's major field. (D, E, H) | | | Rubric | | | | | | | | | | | | | | Ideal Level of | Achievement | Standard Level | of Ach | nievement | Unacceptable Level of Achievement) | | | Evaluation 1 | | | | learly understands
he nanomaterials
ds. | The student de
material proper
the quantum m | rties co | ome from | The student did not describe that material properties come from the quantum mechanics and did not explain the nanomaterials design methods. | | | Evaluation | n 2 | | | learly understands
now to utilize the
hanic algebra. | The student ut
quantum mech | tilizes t
ianics a | the
algebra. | The student did not utilize the quantum mechanics algebra. | | | Evaluation | n 3 | | The student a nanomaterials developing he | applies the
design for | | | | The student did not propose the application of the nanomaterials design in her/his field. | | | Assigne | d Depar | tment Ob | jectives | | | | | • | | | | g Metho | | | | | | | | | | Outline nanomat motions quantum students materials | | | nologies. An objectial design. Firstof nuclei and elemechanics clariare going to lea
, which will be r
, which will be r | cologies. An objective of this course is to develop a scientific way of thinking by learning crial design. First, students are going to learn the outline of quantum mechanics, which explains the function and electrons that make up a material. Second, the students are going to learn how mechanics clarifies the composition and characteristics (physical properties) of materials. Lastly, there going to learn the state-of-the-art nanomaterials design method to design highly-functional which will be required in various engineering fields in the future. In the future of this practice lectures are the practice problems with her/his own hands, and to explain her/his | | | | | | | Style
Notice | | In this co | to other students easy to understand. by for the preparation / review are 90 hours of study content. who miss 1/5 or more of classes will not be eligible for evaluation. | | | | | | | | <u> </u> | | Students | who miss 1/5 o | r more of classes w | vill not be eligibl | e for e | valuation. | | | | Cnaract | eristics (| or Class / | Division in Le | earning | Ι | | | □ Instructor Dusfessionally | | | ☑ Active | Learning | | ☐ Aided by I | CT | ☑ Applicable to a positive positiv | o Rem | ote Class | ☐ Instructor Professionally Experienced | | | Course | Plan | | | | | | | | | | | | 1 | Theme | | | Goals | | | | | | | 1st c | Learn the outlir
differences betw | um Mechanics (First
ne of quantum mech
een quantum mech
eanics by comparing | chanics and
nanics and | The st
quant | tudent exp
um mecha | plains the differences between anics and Newtonian mechanics | | | | | 2nd L | Outline of Quant
Learn the metho
mechanically. | um Mechanics (Sec
d of expressing mo | cond Half)
otions quantum | The st | tudent exp
le motion | plains the description of the in quantum mechanics. | | | 1st | | 3rd A | Algebra) | m Mechanics 1 (Op
Igebra, which is ne
nechanics | | The st | tudent har
intum med | ndles the basic algebra necessary
chanics. | | | | 1st
Quarter | 4th | Equation)
Schrodinger wav | m Mechanics 2
(Some equation is the banics. Learn Schrö | asic equation | | | plains the relation between wave cle motion. | | | | | 5th | Relations I: Coor | m Mechanics 3 (Cordinates and Mome utation relation bet momentum. | ntum) | | | perates the commutator brackets and momentum. | | | | | 6th | Relations II: Ang | m Mechanics 4 (Co
jular Momentum)
utation relation reg
um. | | The students operates the commutator brackets to coordinates and momentum. | | | | | | | 7th | Basics of Quantum
Operators)
Learn about Herm | ` | ermitian | The student expl
calculates the tir
of physical quan | ne evolution o | nitian, and
f expectation value | | |-----------------------------|-------------------------------|-----------|---|--|--------------------------------------|--|------------------|------------------------------------|--| | | | 8th | Basics of Quantum
Potential)
Learn the quantur
square-well poten | n Mechanics 6 (So | | The student deri
particle bound by | ves the guant | um states of a
Il potential. | | | | | 9th | Basics of Quantum
Scattering Problem
Learn about scatte
the tunnel effects. | n and Tunnel Effe
ering problems a | ect) | The student derives the transmission probability through the square-well potential energy barrier. | | | | | | | 10th | Basics of Quantun
Oscillators)
Learn about the q
oscillators. | ` | | The student derives the quantum states of Harmonic Oscillator. | | | | | | 2nd
Quarter | 11th | Basics of Quantum
Heat)
Learn about Einste | ` | attice Specific | The student deri solid. | ves the heat o | apacity of Einstein | | | | | 12th | Electron Configura
Learn about the q
bounded by the Co | uantum states of | an electron | The student explains the quantum states of an electron in an atom. | | | | | | | 13th | Electron Configura
Quantum Statistic
Learn about the e
the quantum stati
elements. | s)
xistence of spin. | the outline of | The student explan atom. | lains the electi | ron configuration in | | | | | 14th | Cohesion Mechani
Bond, Covalent Bo
Learn the cohesion
materials. | and Metallic F | Bond) | The student explosed and metallication the cohes materials. | ic bonds) | • | | | | 15th | | Density Functiona
Material Design
Learn the density
principle calculatio
functional theory,
using the first-prir | functional theory on based on the c | , the first
lensity
als design | The student explains the nanomaterials design methods. | | | | | | | 16th | Term-end examin | ation | | | | | | | Evaluatio | n Meth | nod and V | Veight (%) | T | T | | 1 | | | | | Examinatio | | Practice &
Presentation | Mutual
Evaluations
between
students | Behavior | Portfolio | Other | Total | | | Subtotal | Basic Ability 20 Technical 50 | | 20 | 0 | 0 | 0 | 0 | 100 | | | Basic Ability | | <u> </u> | 5 | 0 | 0 | 0 | 0 | 25 | | | Technical
Ability | | l | 5 | 0 | 0 | 0 | 0 | 55 | | | Interdisciplinar 10 Ability | | | 10 | 0 | 0 | 0 | 0 | 20 | | | А | kashi Co | llege | Year | 2 | 024 | | | ourse
Title | Culture and Communication | | |---|---|--|--|---------------------------|---|---|---------------------------|--|---|--| | Course | Informat | ion | | • | | | • | | | | | Course Co | ode | 6005 | | | | Course Categor | у | General , | / Elective | | | Class Forr | mat | Lecture | | | | Credits | | Academi | c Credit: 2 | | | Departme | ent | Engineer | | nic Sy | stem | Student Grade | | Adv. 1st | | | | Term | | First Sen | nester | | | Classes per We | ek | 2 | | | | Textbook
Teaching | | | | | | | | | | | | Instructor | | INOUE H | idetoshi | | | | | | | | | | Objective | | | | | | | | | | | (1) Deepe
(2) Impro
(3) Becon | en understa
ve one's a
ne proficie | anding of d
bility to foll
nt with TOE | ow English pro
TC format que | s.
nunci
stions | ation and rhyth | ım. | | | | | | Rubric | | | i | | | | | | | | | | | | Ideal Level | | | Standard Level | | | Unacceptable Level | | | Achievement 1 Achievement 2 Achievement 2 Achievement 3 Achievement 3 Assigned Department Objective Teaching Method Learning a lang thoughts and we | | | of different | cultur | es. | Deepened unde
different culture | es. | | Did not deepen understanding of different cultures. | | | Achievement 1 Achievement 2 Achievement 2 Achievement 3 Achievement 3 Assigned Department Objectives Teaching Method Outline Learning a language is thoughts and values of communication. Taking skills by understanding exercise is somewhate In order to achieve the Look up important we Review the model dis | | | | Engli
on and | sh
I rhythm. | Gained English and rhythm. | pronui | nciation | Did not gain English pronunciation or rhythm. | | | Achievem | ent 3 Fully became proficient with TOEIC format questions. d Department Objectives g Method Learning a language is more than just le thoughts and values of the people who communication. Taking the UK and busi skills by understanding the differences a exercise is somewhat easy, so it is not in a language is more than just le thoughts and values of the people who communication. Taking the UK and busing the differences are exercise is somewhat easy, so it is not in a language is more than just le thoughts and values of the people who communication and rnythm. In order to achieve the goals, students of the people who communication and rnythm. | | | | icient with estions. | Became proficie format question | ent wit
ns. | Did not become proficient with TOEIC format questions. | | | | Assigne | d Depart | ment Ob | jectives | | | | | | | | | Teachin | g Metho | d | | | | | | | | | | Outline | | thoughts
commun
skills by | and values of
ication. Taking
understanding | the p
the l
the d | eople who spea
JK and busines:
ifferences and (| ak it. Therefore,
s English as an e
commonalities w | these
xampl
ith Jap | exercises
e, the goo
oan. The l | will cover language, culture, and
al is to improve students' English | | | Style | | In order to achieve the goals, students will need to self-study as follows: - Look up important words in advance and understand them in English Review the model dialogs learned in the class and practice using the acc | | | | | | | npanying CD until able to recite it. | | | Notice | | - Reasse | ssments will no
tions without r | ot be
easor | permitted if stu
Is such as abse | gnments.
Idents are late of
Ince due to suspe
Vill not be eligible | ension. | etc. | ne class and unable to work or give | | | Charact | eristics o | | Division in | | | ···· ··· · · · · · · · · · · · · · · · | | <u> </u> | , | | | ☐ Active | | | ☐ Aided by | | | ☐ Applicable to | o Rem | ote Class | ☐ Instructor Professionally Experienced | | | | | | • | | | • | | | | | | Course | Plan | | | | | | | | | | | | | | Theme | | | | Goals | | | | | | | 1st | | rview | guidance
of the first sen
aluation metho | | | | | | | | | 2nd | Check In and \ | Nork (
eadin
at the | Out
g comprehensi
counter | | Under | stand con | versations at the counter. | | | | | 3rd | What Will the '
Listening and r
weather
Chapter 2: Clo | eadin | ner Be Like?
g comprehensi | on about the | Under | stand the | weather. | | | | 1st
Quarter | 4th | A London with
Listening and r
London buses
Chapter 3: Gro | eadin | g comprehensi | on about | Under | stand Lon | idon buses. | | | 1st
Semeste
r | | 5th | Back to the Fu
Listening and r
railways
Chapter 4: Coo | eadin | g comprehensi | on about | Under | stand rail | ways. | | | | | 6th | Shop-'n'-Chat
Listening and r
shopping
Chapter 5: Eat | | g comprehensi | on about | Under | stand sho | pping. | | | | | | First semester | | | | Reviev | v the topi | cs covered in the first semester. | | | | | | Midterm exam | | | | | | | | | | 2nd | 0.1 | More Than Jus
Listening and r
concept of pos
Chapter 6: Sho | eadin | a comprehensi | on about the | Under | stand the | concept of post offices. | | | | Quarter | 10th | Off the Beaten
Listening and r
Chapter 7: Ho | eadin | g about tourisn | n | Under | Inderstand tourism. | | | | | | 11th | Dining Out
Diversity
Listening and reading
culture
Chapter 8: The Weath | comprehension about food | Understand food culture | 2. | | |--------------|----------------------|--------|--|--------------------------------|-----------------------------------|-------------------|--| | | | 12th | Afternoon Tea
Listening and reading
Chapter 9: At a Movie | about afternoon tea
Theater | Understand afternoon tea. | | | | | | 13th | The Beatles Are Forev
Reading about the Bea
Chapter 10: Sports | | Understand the Beatles | | | | | | 14th | Football: Sport or Bus
Reading about footbal
Chapter 11: Traffic an | | Understand football. | | | | | | 15th | Second semester over | all review | Review the topics cover semester. | red in the second | | | | | 16th | Final exam | | | | | | Evaluation | n Meth | od and | l Weight (%) | | | | | | | Examination | | xamination | Short Tests | Other | Total | | | Subtotal | | 80 | | 20 | 0 | 100 | | | Basic Profic | Basic Proficiency 80 | | 20 | 0 | 100 | | | | Specialized | l Proficien | cy 0 | <u> </u> | 0 | 0 | 0 | | | Cross Area | Proficien | cy 0 | | 0 | 0 | 0 | | | | Akashi Co | ollege | Year | 2024 | | Course
Title | Overseas Training | |------------------------|----------------------------------|---|---|---|---|--|--| | Course | Informa | tion | | | | | | | Course C | ode | 6006 | | | Course Categor | y General / | Elective | | Class For | mat | Practical to | | | Credits | School C | redit: 2 | | Departme | ent | Mechanica
Engineerin | ıl and Electronic
เฉ | System | Student Grade | Adv. 1st | | | Term | | Year-roun | d | | Classes per We | ek 2 | | | Textbook | and/or
Materials | none | | | | | | | Instructo | | | | | | | | | Course | Objectiv | 'es | | | | | | | (1) To en
(2) To ac | hance the | educational o | experience thro
ve by joining ac | ugh active particip
ctivities in differen | oation in overseas
t cultural environ | s training.
ments. | | | Rubric | | | | | | | | | | | | Ideal Level | | Standard Level | | Unacceptable Level | | Achievem | nent 1 | | To enhance the experience thre participation in training. | ough active | To enhance the experience thro participation in training. | ugh active | Did not enhance the educational experience through active participation in overseas training. | | Achievem | nent 2 | | | oroad perspective
vities in different
nments | To achieve a br
by joining activi
cultural environ | | Did not achieve a broad perspective by joining activities in different cultural environments | | Achievem | nent 3 | | Communicate | using English | Communicate | using English | Can not communicate using
English | | Assigne | ed Denar | tment Obj | ectives | | 1 | | Lenghon | | | ng Metho | | ccuves | | | | | | Outline | | period. The
to 90 hour
training de | e number of trans
or more, inclusions), pos
estinations), pos | aining days shall buding overseas tra
st-event report me | e ten days or mo
ining, prior guida
eeting, and repor | re. This course
ance (manner ed
ts to handle the | od is during the summer holiday
requires self-study time equivalent
lucation, a preliminary survey of
related organizations. Advanced
I fulfill this course requirement. | | Style | | Voor des | v aantaat with v | | amaia advisau Ast | | th local people during the training | | Notice | | period, co | mmunicate with
d language. | them, keep an a | ttitude suitable fo | or trainees, bein | g careful with manners such as | | Charact | teristics (| of Class / [| <u>Division in Le</u> | arning | | | | | ☑ Active | Learning | | | | 1 | | T | | | | | ☑ Aided by IC | _ | ☑ Applicable to | Remote Class | ☐ Instructor Professionally Experienced | | Courco | Dlan | | ☑ Aided by IC | _ | ☑ Applicable to | Remote Class | | | Course | Plan |
 | , | _ | | | | | Course | Plan | | heme | _ | | Goals
Explanation of t | Experienced , , , , , , , , , , , , , , , , , , , | | Course | Plan | | , | _ | | Goals
Explanation of t
at the training s | he course, advice about etiquette afety. | | Course | Plan | 1st G | heme | _ | | Goals
Explanation of t
at the training s | he course, advice about etiquette afety. | | Course | Plan | 1st G 2nd Pi 3rd id | heme
uidance
ractice | _ | | Goals
Explanation of t
at the training s
Individual techn
training destinal
idem | he course, advice about etiquette afety. | | Course | | 1st G 2nd Pi 3rd id 4th id | heme uidance ractice em | _ | | Goals Explanation of t at the training s Individual techn training destinat idem idem | he course, advice about etiquette afety. | | Course | 1st | 1st G 2nd Pr 3rd id 4th id 5th id | heme uidance ractice em lem | _ | | Goals Explanation of t at the training s Individual techn training destinal idem idem idem | he course, advice about etiquette afety. | | | 1st | 1st G 2nd Pi 3rd id 4th id 5th id 6th id | heme uidance ractice lem lem | _ | | Goals Explanation of t at the training s Individual techn training destinal idem idem idem idem | he course, advice about etiquette afety. | | 1st
Semeste | 1st | 1st G 2nd Pr 3rd id 4th id 5th id 6th id 7th id | heme uidance ractice lem lem lem | T T | | Goals Explanation of t at the training s Individual techn training destinal idem idem idem | he course, advice about etiquette afety. | | 1st | 1st | 1st G 2nd Pr 3rd id 4th id 5th id 6th id 7th id 8th N | heme uidance ractice lem lem lem lem lem o mid term exa | T T | | Goals Explanation of t at the training s Individual techn training destinal idem idem idem idem idem idem | he course, advice about etiquette afety. | | 1st | 1st | 1st G 2nd Pr 3rd id 4th id 5th id 6th id 7th id 8th N 9th id | heme uidance ractice lem lem lem lem lem lem o mid term exalem | T T | | Goals Explanation of t at the training s Individual techn training destinatidem idem idem idem idem idem idem idem | he course, advice about etiquette afety. | | 1st | 1st | 1st G 2nd Pi 3rd id 4th id 5th id 6th id 7th id 8th N 9th id 10th id | heme uidance ractice em lem lem lem lem o mid term exalem lem | T T | | Goals Explanation of t at the training s Individual techn training destinatidem idem idem idem idem idem idem idem | he course, advice about etiquette afety. | | 1st | 1st
Quarter | 1st G 2nd Pi 3rd id 4th id 5th id 6th id 7th id 8th N 9th id 10th id 11th id | heme uidance ractice lem lem lem lem lem lem lem lem lem le | T T | | Goals Explanation of t at the training s Individual techn training destination destination destination dem | he course, advice about etiquette afety. | | 1st | 1st | 1st G 2nd Pr 3rd id 4th id 5th id 6th id 7th id 8th N 9th id 10th id 11th id 12th id | heme uidance ractice lem lem lem lem o mid term exa | T T | | Goals Explanation of t at the training s Individual techn training destinatidem idem idem idem idem idem idem idem | he course, advice about etiquette afety. | | 1st | 1st
Quarter | 1st G 2nd Pr 3rd id 4th id 5th id 6th id 7th id 8th N 9th id 10th id 11th id 12th id 13th id | heme uidance ractice lem lem lem lem lem lem lem lem lem le | T T | | Goals Explanation of t at the training s Individual techn training destinal idem idem idem idem idem idem idem idem | he course, advice about etiquette afety. | | 1st | 1st
Quarter | 1st G 2nd Pr 3rd id 4th
id 5th id 6th id 7th id 8th N 9th id 10th id 11th id 12th id 13th id 14th id | heme uidance ractice lem lem lem lem o mid term exalem lem lem lem | T T | | Goals Explanation of tat the training s Individual techn training destinatidem idem idem idem idem idem idem idem | he course, advice about etiquette afety. | | 1st | 1st
Quarter | 1st G 2nd Pr 3rd id 4th id 5th id 6th id 7th id 8th N 9th id 10th id 11th id 12th id 13th id 14th id 15th id | heme uidance ractice lem lem lem o mid term exa lem lem lem lem | ms | | Goals Explanation of tat the training s Individual techn training destinatidem idem idem idem idem idem idem idem | he course, advice about etiquette afety. | | 1st | 1st
Quarter | 1st G 2nd Pi 3rd id 4th id 5th id 6th id 7th id 8th N 9th id 10th id 11th id 12th id 13th id 14th id 15th id 15th id | heme uidance ractice lem lem lem o mid term exa lem | ms | | Goals Explanation of tat the training s Individual techn training destinatidem idem idem idem idem idem idem idem | he course, advice about etiquette afety. | | 1st | 1st
Quarter | 1st G 2nd Pr 3rd id 4th id 5th id 6th id 7th id 8th N 9th id 10th id 11th id 12th id 13th id 14th id 15th id 15th id | heme uidance ractice em | ms | | Goals Explanation of t at the training s Individual techn training destination destination destination destination destination dem | he course, advice about etiquette afety. | | 1st
Semeste
r | 1st
Quarter
2nd
Quarter | 1st G 2nd Pr 3rd id 4th id 5th id 6th id 7th id 8th N 9th id 10th id 11th id 12th id 13th id 14th id 15th id 15th id 15th id 2nd id | heme uidance ractice lem lem lem lem lem lem lem lem lem le | ms | | Goals Explanation of t at the training s Individual techn training destination destination destination destination dem | he course, advice about etiquette afety. | | 1st | 1st
Quarter | 1st G 2nd Pr 3rd id 4th id 5th id 6th id 7th id 8th N 9th id 10th id 11th id 12th id 13th id 14th id 15th id 15th id 3rd id 3rd id | heme uidance ractice lem lem lem o mid term exa lem | ms | | Goals Explanation of tat the training s Individual techn training destinatidem idem idem idem idem idem idem idem | he course, advice about etiquette afety. | | 1st
Semeste
r | 1st
Quarter
2nd
Quarter | 1st G 2nd Pr 3rd id 4th id 5th id 6th id 7th id 8th N 9th id 10th id 11th id 12th id 13th id 14th id 15th id 15th id 3rd id 4th id 5th id 5th id 15th id 15th id 15th id 16th N | heme uidance ractice lem lem lem lem lem lem lem lem lem le | ms | | Goals Explanation of tat the training s Individual techn training destinatidem idem idem idem idem idem idem idem | he course, advice about etiquette afety. | | 1st
Semeste
r | 1st
Quarter
2nd
Quarter | 1st G 2nd Pr 3rd id 4th id 5th id 6th id 7th id 8th N 9th id 10th id 11th id 12th id 13th id 14th id 15th id 15th id 3rd id 4th id 5th id | heme uidance ractice lem lem lem o mid term exa lem | ms | | Goals Explanation of tat the training s Individual techn training destination | he course, advice about etiquette afety. | | | | 8th | No mid term exar | ns | | | | | | | |--------------------------|---------|-------------|------------------|--|----------|-----------|-------|-------|--|--| | | | 9th | idem | | | idem | idem | | | | | | | 10th | idem | | | idem | idem | | | | | | | 11th | idem | | | idem | idem | | | | | | 4th | 12th | idem | | | idem | idem | | | | | | Quarte | er 13th | idem | | | idem | idem | | | | | | | 14th | idem | | | idem | | | | | | | | 15th | idem | | | idem | | | | | | | | 16th | No End Term Exa | ms | | | | | | | | Evaluati | ion Me | ethod and \ | Weight (%) | | | | | | | | | | | Examination | Presentation | Mutual
Evaluations
between
students | Behavior | Portfolio | Other | Total | | | | Subtotal | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Basic
Proficienc | у | 0 | 0 | 0 0 | | 0 | 0 | 0 | | | | Specialize
Proficienc | ed
Y | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Cross Are
Proficienc | a
y | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | A | Akashi C | ollege | Year | 2024 | | Course
Title | Creative Faculty
Development | | | |--|-------------------------|--|---|--|---|---|---|--|--| | Course | Informa | ition | | 1 | | , ride | 12 Stolopinione | | | | Course C | | 6007 | | | Course Categor | y Specializ | zed / Compulsory | | | | Class For | | Experime | ent | | Credits | | Credit: 2 | | | | Departme | ent | Mechanic
Engineer | cal and Electronic | System | Student Grade | Adv. 1st | ī. | | | | Term | | | Semester | | Classes per Week 4 | | | | | | Textbook | | | | | | | | | | | Instructo | Materials
or | NAKANI | SHI Hiroshi | | | | | | | | | Objectiv | | | | | | | | | | (1) Can s | set goals a | nd plan wor | | • | | | progress and work results | | | | (2) Can a | apply expe
demonstra | rtise and pr
te communi | esent problem so
cation skills and t | llution plan.
teamwork through | cooperation and | d work distribut | ion in group work. | | | | Rubric | | | | | • | | | | | | | | | Ideal Level | | Standard Level | | Unacceptable Level | | | | Achievement 1 | | | Can set goals
a group basis,
voluntarily, an
progress and
effectively. | and plan work on
perform work
d report on work
work results | Can set goals a
a group basis, p
voluntarily, and
progress and w | perform work
I report on worl | on a group basis, perform work | | | | Achievement 2 Achievement 3 Assigned Department Ob Teaching Method | | | Can apply exp
practicable pro
plans. | ertise and present
oblem solution | Can applyexper
a problem solut | tise and preser
tion plan. | Cannot apply knowledge and present a problem solution plan | | | | skills and teamwo
group work. | | | | k, and
communication | Can cooperate,
and demonstra
communication
teamwork throu | te
skills and | work, and demonstrate communication skills and | | | | Assigne | ed Depar | tment Ob | jectives | | • | | · | | | | Teachir | ng Metho | od | | | | | | | | | Outline | | work, an
of working
handling
assignment | nd will foster their
ng on a task, the
devices, and inv
ents.
Lapply their know | r ability to solve pr
y will widely develor
estigating perform | oblems in engine op the relevant k ance, etc. to fos | eering design in
nowledge throu
ter creativity th
ed Course stud | administrative roles through group a practical manner. In the process ugh assembling equipment, irough engineering design y and conduct creative experiments | | | | Style | | and exer
from diff
explanat
groups v | cises for assignm
erent Advanced (
ions on basic kno | nents under the fact
Courses and work on
Wedge, etc. are g | culty in charge. S
on the assignme
iven, students w | Students will for
Int. After the as
In conduct all o | rm groups of around 4 members signment theme is presented and of the Plan-Do-See activities in diverbally in the discussion and | | | | Notice | | guarante | eed in classes and
ent reports. Stud | amount to 90 hou
d the standard self
ents will be divided
r more of classes v | -study time requ
d into groups du | iired for pre-stu
ring guidance. | s include the learning time add / review, and completing | | | | Charact | teristics | of Class / | Division in Le | earning | _ | | | | | | ☑ Active | e Learning | | ☑ Aided by IO | CT | ☑ Applicable to | Remote Class | ☐ Instructor Professionally Experienced | | | | Course | Plan | | | | | | | | | | Cour SC | lan | | Theme | | | Goals | | | | | | | 1st | Class guidance, t
Receive class gui
schedule, activity | team division, and idance and check to conditions, and e into teams and do | he overall
valuation | Understand the content. | e course aims and assignment | | | | | | 2nd | | solution plans for t
nd implement an a | | contribute to the | carily in group activities and ne team by demonstrating skills and teamwork. | | | | | | | Same as week 2 | | | Same as week | | | | | 2nd
Semeste
r | 3rd
Quarter | 4th | problem solution
give an oral pres
plan. | and presentations:
plans for the assig
entation of an imp | nment and
lementation | | others how effective and proposed solutions and plans are. | | | | - | | | Can reconsider ir
make a better im
results of the pla | n groups the activit
nplementation plan
nning discussion. | ty plans and
based on the | Same as week | 2 | | | | | | H | Same as week 5 | | | Same as week | | | | | | | | Same as week 5 | | | Same as week | | | | | | | + | Same as week 5 | | | Same as week | | | | | | 4th | | Same as week 5 | | | Same as week 2 | | | | | | Quarter | | Same as week 5 | | | Same as week | | | | | | | 11th | Same as week 5 | | | Same as week 2 | | | | | | 12th | S | ame as week 5 | | | Same as week 2 | | | | | |----------------------------|----------|-------|-----------------|--|----------|--|----------------|-------|--|--| | | 13th | S | ame as week 5 | | | Same as week 2 | | | | | | | 14th | S | ame as week 5 | | | Same as week 2 | Same as week 2 | | | | | | 15th | ln | roblem solution | ion: Present the
plan and give an
ne outcome of im | oral | Can explain to others
how reasonable the implemented solution plan was and the outcome of implementing it. | | | | | | | 16th | N | lo final exam | | | | | | | | | Evaluation | Method a | nd We | eight (%) | | | | | | | | | | Examina | tion | Presentation | Report | Behavior | Portfolio | Other | Total | | | | Subtotal | 0 | | 40 | 50 | 10 | 0 | 0 | 100 | | | | Basic
Proficiency | 0 | | 5 | 5 | 10 | 0 | 0 | 20 | | | | Specialized
Proficiency | | | 10 | 20 | 0 | 0 | 0 | 30 | | | | Cross Area
Proficiency | 0 | 0 2 | | 25 | 0 | 0 | 0 | 50 | | | | А | kashi Co | llege | | Year | 2024 | | | ourse
Title | Engineering Topics for
Advanced Course Students | | |---|----------------|--|---|--|---|---|---|--|---|--| | Course | Informat | ion | | | | | | | | | | Course Co | ode | 6008 | | | | Course Catego | ry | Specialize | ed / Compulsory | | | Class Forr | mat | Lecture | | | | Credits | | Academic | : Credit: 2 | | | Departme | ent | Enginee | ring | and Electronic S | System | Student Grade | | Adv. 1st | | | | Term | | Second | Sem | ester | | Classes per We | eek | 2 | | | | Textbook
Teaching | Matérials | | | | | | | | | | | Instructor | | · · | ABE | Moriyoshi,HIR/ | AISHI Toshihiro,N | IAKANISHI Hiros | shi,NOI | MURA Hay | ato, | | | (1) Und
(2) Lea | rn about th | e latest te | sues | in areas differ | ent from one's ov | vn area of speci | alty. | | the status of their efforts. n each area of specialty. | | | Rubric | in ana ana | icrotaria to | pico | about teermon | ogico ana rescare | | (ISCOITE) | z menary i | in each area or specialty. | | | Rabile | | | Ic | deal Level | Standard Level | | | Unacceptable Level | | | | Achievem | ent 1 | | U
te
o | Inderstand the
echnological iss
wn area of spe | sues in one's | Understand the technological is own area of sp solutions and t efforts. | e latest
ssues ir
ecialty. | n one's
. their | Do not understand the latest technological issues in one's own area of expertise, their | | | Achievem | ent 2 | | a | | e latest issues in
from one's own | Learn about th
areas different
area of specialt | from o | | Do not learn about the latest issues in areas different from one's own area of specialty. | | | Achievement 3 Assigned Department Ob | | al
re
fr | earn and unde
bout technolog
esearch that ai
iendly in each
pecialty. | gies and ·
re co-existence | Learn and undo
about technolo
research that a
friendly in each
specialty. | gies an | id
existence | Do not learn and understand topics about technologies and research that are co-existence friendly in each area of specialty. | | | | Assigne | d Depart | ment Ol | ojec | | | | | | | | | Teachin | g Metho | | | | | | | | | | | Outline | | In order to broaden students' backgrounds as an engineers, it is impleted their own areas of specialty but learn other areas, too. In this cours expertise will give knowledge of the trends in technological developing inside and out of this course. Classes will cover various topics and to Nakanishi: Guidance and interdisciplinary area (three classes) Fujiwara: Mechanical systems (three classes) Nomura: Electronic and information systems (three classes) Watanabe: Urban systems (three classes) Hiraishi: Building system (three classes) By learning about various of students will develop universal thinking and flexible development callieds. | | | | | | rse, faculty
pment in a
take place | y members from different areas of an interdisciplinary manner both in a relay form: nent and research processes. | | | Style | | Fujiwara
Nomura
Watanal
Hiraishi | will
will
oe w
will t | week-period, Nakanishi will teach the guidance in week 1 in a lecture-style format. will teach classes from weeks 2 to 4 in a lecture-style format. vill teach classes from weeks 5 to 7 in a lecture-style format. ver will teach classes from weeks 8 to 10 in a lecture-style format. ver vill teach classes from weeks 11 to 13 in a lecture-style format. ver vill teach classes from weeks 11 to 13 in a lecture-style format. ver vill teach classes from weeks 11 to 13 in a lecture-style format. ver vill teach classes in the form of off-campus exercises. | | | | | | | | Notice | | guarant
assignm
explaine | eed i
ent r
d in | n classes and
reports. Althou
a way that is e | the standard self- | study time requestions requestions requestions requesting the students is students is sections. | uired fo
side of
should | r pre-stud
students'
be able to | include the learning time
ly / review, and completing
own specialties, they will be
properly learn them. | | | Charact | eristics o | of Class / | ' Div | vision in Lea | arning | | | | | | | ☑ Active | Learning | | | Aided by IC | Γ | ☑ Applicable t | o Remo | ote Class | ☐ Instructor Professionally
Experienced | | | | N. | | | | | | | | | | | Course | Plan | | | | | | I _ | | | | | | | | The | | | | Goals | | | | | 1st i | | Expl
Adva
met
impo | anced Course
hods and othe
ortance of acti
wledge throug | anishi)
se of Engineering
Students. Inform
r details. Explain
vely learning a wi
h self-experience,
ology topics, etc. | the evaluation
the
ide range of | | stand an c
arning pla | overview of this class and create a
n. | | | | 2nd
Semeste
r | 3rd
Quarter | 2nd | Prob
ever
hous
will
prob | plems related t
rywhere in eng
sing and electr
discuss the ba
plems. (Fujiwa | mal Fluid Problems in Engineering lems related to thermal fluid are faced ywhere in engineering, such as cooling of | | | | the basic laws of heat conduction
er, and be able to perform basic
ions. | | | problems Practical When pe of a then and simp | | | en performing
thermal problesimplify the ac | Problem Analysis
a hand-calculation level analysis
lem, it is necessary to model | | | Can model each element and perform thermal calculations for practical thermal problems. | | | | | | | 4th Th | hallenges in Anallo perform analysiand-calculation leat transfer coeffequired. We will unstructing such auidelines for more fujiwara) | is of thermal prolevel, thermophys
icients, and othe
inderstand the pland atabase and c | blems at the ical properties, r values are rocess of liscuss | Can discuss the production discussion coefficients. | procedures for cal properties ar | obtaining non-
nd heat transfer | | |---|--------------|-----------------------
--|---|--|--|------------------------------------|---------------------------------------|--| | | | 5th L | utomation 1 (Nor
earn about the co
sing existing case | encept of work au | utomation, | Can explain even | ts that can be a | automated. | | | | | 6th L | utomation 2 (Nor
earn about platfo
utomation. | | grammatic | Can explain a pla automation. | tform used for | programmatic | | | | | 7th L | utomation 3 (Nor
earn how to clarif
ask, consider the
through program | fy thé procedure
form of the outp | to automate a
ut, and realize | Can explain procedures for automating repetitive tasks in research activities and daily routines through programs. | | | | | | | 8th D | evelopment and | Environment(Wa | tanabe) | Can explain the in
on the environment
function of the na | ent, and the dis | | | | | | | nvironmental load
ssessment metho | | ntal impact | Can explain indic
assessment(LCA)
assessment meth
human activities |), and environm
nods related to | the impact of | | | | | 10th E | nvironmental Risl | k and Ethics(Wat | anabe) | Can explain the t
natural subsisten
resource finitene
environmental ris | ce, inter-generass, as well as th | ational ethics, and
le trilemma of | | | | | a G
11th co
p | ssistance for devireas (Hiraishi) live an introductio ountries and disa: rovided so far, ar echnologies can b the global comn | on on assistance is
ster areas that had
not consider the way
see applied to local | for developing
ave been
vay in which | Can recognize the importance of local characteristics also in a globalized society. | | | | | | | A
G
12th d
n | ppropriate techno
live an introductic
echnology, examp
eveloping countri
neasures in Japan
echnology should | blogy (Hiraishi)
on on the need fo
bles of its applica
es and those in e
to think about tl | tion in
environmental | Can explain the c
technology and g | | | | | 4th
Qua | arter | 13th (I | ecycling and bend
Hiraishi)
xplain how to tre
uch as fallen leav
nd human waste,
ecycling-based so | at biological orga
es, weeds, wood
and how the sys | inic materials
s, food waste,
stem for a | Can explain examples of material recycling in a recycling-based society. | | | | | | | | nterdisciplinary ar
is a summary of t
ange of the latest
icluding shipbuild
municating, po
n exercise on boa
laritime Sciences
AIJINMARU. | his course, learn
science and teching, navigating,
ort and city planr
ard the Graduate | about a wide
nnology,
ning, through
School of | Can organize and explain the knowledge gained through the on-board exercise. | | | | | | | 15th Co | nterdisciplinary are a summary of the latest of the latest or | his course, learn science and teching, navigating, ort and city plant the Graduate Kobe University's will be an intensi | about a wide
nnology,
ning, through
School of
s training ship, | Can organize and explain the knowledge gained through the on-board exercise. | | | | | | Į. | | | | | | | | | | | | | o final exam | | | | | | | | Evaluation | | | | Muhupi | | | | | | | Evaluation | | od and W | | Mutual
Evaluations
between
students | Behavior | Portfolio | Other | Total | | | | Meth | od and W | eight (%) | Evaluations between | Behavior | Portfolio 0 | Other | Total | | | Subtotal
Basic | Metho | od and W | eight (%) Presentation | Evaluations
between
students | | | | | | | Evaluation Subtotal Basic Proficiency Specialized Proficiency | Metho
Rep | od and W | eight (%) Presentation | Evaluations
between
students | 10 | 0 | 0 | 100 | | | Д | kashi Co | ollege | | Year | 20 | 24 | | | Course
Title | Engineering Presentation I | | |--|--|---|---|--|---|---|--|-------------------------------------|--|---|--| | Course | Informa | tion | | | | | | | | | | | Course Co | | 6009 | | | | | Course Catego | ry | - t · | ed / Compulsory | | | Class For | mat | Seminar | | | - 61 | | Credits | | School C | redit: 1 | | | Departme | ent | Engineer | | l Electronic | c Sysi | tem | Student Grade Adv. 1st | | | | | | Term | | First Ser | nester | | | | Classes per We | eek | 2 | | | | Textbook
Teaching | | A separa | ate han | dout will b | be pro | vided. | | | | | | | Instructor | | SUYAMA | . Taikei | ,TAKEDA N | Naho | | | | | | | | | Objectiv | | | , | | | | | | | | | discuss th
(2) Can s
discuss th
(3) Under
Theme 2 | nem orally. et a themen nem orally. stand eng and prese | e on one's on
ineering etl
ntations of | own in
hics thi
its resi | Theme 1, rough rese | prepa
earch | are materials of the ethics | (e.g., summary | and : | slides) for t | presentation, and present and the presentation, and present and the cademic societies covered in | | | Rubric | | | | | | | | | | | | | | | | Idea | al Level | | | Standard Level | | | Unacceptable Level | | | Achievement 1 Achievement 1 Can set a problem for th theme, prepare material summary and slides) for presentation, and preser discuss them orally in a persuasive manner. Can set a theme on one' | | | | | | terials (e.g.,
s) for the
present and
in a | Can set a prob
theme, prepare
summary and
presentations,
discuss them o | e mat
slides
and p | terials (e.g.,
s) for the
present and | given theme, prepare materials
(e.g., summary and slides) for | | | Achievement 2 | | | | pare mater
Imary and | rials (
I slide
and p
orally | e.g.,
s) for the
present and
in a | Can set a them
materials (e.g.
slides) for the
present and dis
orally. | , sum
prese | nmary and
entation, and | Cannot set a theme, prepare materials (e.g., summary and slides) for the presentation, and present and discuss them orally. | | | Achievement 3 | | | thro
code
acad | y understa
lain engine
lugh resea
les, etc. of
demic socie
sentations | eering
arch o
the p
ieties | g ethics
f the ethics
professional
and | through research of the ethics codes, etc. of the professional academic societies and | | | Do not understand engineering ethics through research of the ethics codes, etc. of the professional academic societies and presentations of its results. | | | Achievem | ent 4 | | Und | erstand ar | nd ca
ce of r | n practice
ole sharing | Understand the role sharing the work. | e imp
rough | ortance of
team | Do not understand the importance of role sharing through team work. | | | Assigne | d Depar | tment Ob | ojectiv | /es | | | | | | | | | Teachin | g Metho | d | | | | | | | |
| | | Outline | | graphica
matters.
viewpoir
their imp
importar | al prese
Stude
ats of (
pression
ace of s | entations, onts will be and subject on and critishamile. | oral p
givei
clarit
tiques
les an | resentations,
n a variety of
ty, (2) conter
s to raise the | etc. in order to assignments, and clarity, (3) applements of the coners by preparing | enha
nd asl
peal, e
itent. | nce student
ked to evalu
etc. In addit
Furthermon | ch as written presentations,
cs' ability to express technical
late each other based on the
tion, the teaching staff will offer
re, students will understand the
ss through team work. (See class | | | Style | | After Na | ķai and | Ishimatsı | u hav | e given their | lectures on the | funda | mental top | ics, etc., students will give | | | Notice | This course's content will amount to 90 hours guaranteed in classes and the standard self-sesignment reports. Emphasis will be on pre- | | | | | | urs of study in to
f-study time requesenting and dis
esenting and dis
ned time. Stude | tal. T
uired
cussi
nts ar | hese hours
for pre-studing the sum
re expected | include the learning time
dy / review, and completing
mary and slides students have
to be able to evaluate other | | | Charact | eristics o | of Class / | Divis | ion in Le | earn | ing | T | | | T | | | ✓ Active Learning ☐ Aided by ICT | | | | | | | ☑ Applicable t | o Rer | note Class | ☐ Instructor Professionally
Experienced | | | Course | Plan | | | | | | | 1 | | | | | | | | Theme | | | /D==1 4 7 1 1 | | Goal | S | | | | 1st Ep | | | | n how to watation. Lead
report ba
for writing | write a
arn h
ased o | (Part 1: Ishing report as a cown to express on specific sacon 2-page re | written
s sentences in a
mples. Set a | Unde | erstand the | basics of writing a report. | | | 1st
Semeste
r | 1st
Quarter | 2nd | Exchar
theme
individ | nge and co
and excha
ually or by | orrect
ange
y grou | opinions eith
p. | en on the given
er by everyone | Unde | | basic writing of a report in | | | | | 3rd | mind v | vhen creat | tina n | ort 1: Nakai)
cortant points
naterials for p
ere with exan | resentations. | Unde | erstand the | key points for creating materials. | | | | | , | | | | 1 | | | | |----------------------------|-------------|--------------|--|---|--|---|--|--------------------------------------|--| | | | 4th | Presentation rules
There are several i
mind when giving
They are explained | mportant points presentations in | public. [·] | Understand the opresentations. | o's and don'ts w | hen giving | | | | | 5th | Theme 1 (Free cho
slides (Nakai and I
Prepare a report w
and prepare a 10-r | shimatsu)
ith an individuall | y set theme | Can create a report with an individually set theme and prepare a 10-minute presentation. | | | | | | | 6th | Theme 1 presental
Ishimatsu)
Each individual will
about Theme 2 foll
with everyone. | give a 10-minut | e presentation | Give a 10-minute presentation about Theme 1 and have a 10-minute discussion with everyone. Also, evaluate each other's presentations. | | | | | | | | Theme 1 presental
Ishimatsu)
Same as above | tion (Part 2: Nak | ai and | Give a 10-minute
and have a 10-m
Also, evaluate ea | inute discussion | with everyone. | | | | | 8th | Theme 1 presental
Ishimatsu)
Same as above | tion (Part 3: Nak | ai and | Give a 10-minute
and have a 10-m
Also, evaluate ea | inute discussion | with everyone. | | | | 9th
10th | | Theme 1 presental
Ishimatsu)
Same as above | tion (Part 4: Nak | ai and | Give a 10-minute
and have a 10-m
Also, evaluate ea | inute discussion | with everyone. | | | | | | Theme 1 presental
Ishimatsu)
Same as above | tion (Part 5: Nak | ai and | Give a 10-minute
and have a 10-m
Also, evaluate ea | inute discussion | with everyone. | | | | | 11th | Presentation rules
Practice the key po
with actual example | oints of public pre | Learn the key points for public presentations. | | | | | | | 2nd | 12th | Theme 2 (Code of slides (Part 1: Nak In teams of two to ethics of respective societies. Prepare to 10-minute present | ai and Ishimatsu
four, research the
professional act
to compile report |)
ne code of
ademic | In teams of two tethics of the prof
they belong to. | to four, can resea
essional academi | arch the code of
c societies that | | | | (uarter | 13th | Theme 2 (Code of
slides (Part 2: Nak
Same as above | ethics): Preparin
ai and Ishimatsu | g reports and
) | Working together
minute presentat
report the ethics
academic societie | ion on and sumn of the respective | narize in a
professional | | | | | 14th | Theme 2 presental Ishimatsu) In teams, give a 10 Theme 1 and have everyone. | `
O-minute present | tation about | In teams, give a 10-minute presentation about Theme 2 and have a 10-minute discussion with everyone. Also, evaluate each other's presentations. | | | | | | | | Theme 2 presentation (Part 2: Nakai and Ishimatsu) Same as above In teams, give a 10-minute presentation Theme 2 and have a 10-minute discussive everyone. Also, evaluate each other's presentations. | | | | | | | | | | 16th | No final exam | | | | | | | | Evaluatio | n Met | hod and V | Veight (%) | ı | T | 1 | | | | | | Re | esume | Presentation&D iscussion | Mutual
Evaluations
between
students | Behavior | Portfolio | Other | Total | | | Subtotal | 30 |) | 60 | 10 | 0 | 0 | 0 | 100 | | | Basic
Proficiency | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | | Specialized
Proficiency | 30 |) | 60 | 10 | 0 | 0 | 0 | 100 | | | Cross Area
Proficiency | 0 | 0 0 0 | | 0 | 0 | 0 | 0 | | | | А | kashi Co | llege | Year | 2024 | | | ourse
Title | Industrial Materials | |---|--|--|---|--|---
---|---|---| | Course 1 | Informat | tion | <u> </u> | · | | | | | | Course Co | ode | 6010 | | | Course Catego | ry | Specialize | d / Compulsory | | Class Forr | mat | Lecture | | | Credits | | Academic | Credit: 2 | | Departme | ent | Mechanica
Engineeri | al and Electronic
ng | System | Student Grade | | Adv. 1st | | | Term | | First Sem | ester | | Classes per Week 2 | | | | | Textbook
Teaching | | A separat | e handout will be | e provided. | | | | | | Instructor | • | MORISHI | TA Tomohiro, ,T | AKEDA Naho,HIRA | ISHI Toshihiro | | | | | (1) Under
on some k
(2) Becom
control of
(3) Under
individuall
(4) Under
various m | kinds of an
ne able to
concrete s
stand the
ly studying
stand the | e reasons for isotropic matchink about structures. (factors to continue and explain physical qua | aterials. (taught
technological inr
taught by Taked
onsider when ma
ning materials of | by Morishita). novation through t a). king environmenta interest to each o magnetism along | he fusion of diffe
ally friendly choi
ther. (taught by | erent fi
ices for
Hirais | ields for th
materials
hi). | lain the engineering application e construction, maintenance, and , and deepen understanding by nd and explain the properties of | | Rubric | | | T | | | | | I | | Achievem | ent 1 | | Ideal Level Can explain the anisotropy in n examples of its application. | naterials and | Understand the anisotropy in mathematical elastic moduli. | e cause
nateria | ls and | Do not understand he cause of anisotropy in materials. | | Achievem | ent 2 | | Can explain the between their | own specialty and eering, and make | Can explain the between their concrete engine | own sp | ecialty and | Cannot explain the relationship between their own specialty and concrete engineering. | | Achievem | ent 3 | | making enviror | CA analysis for
nmentally friendly
ustrial materials. | Understand the items to consider for making environmentally friendly choices for industrial materials. | | | Do not understand the need to make environmentally friendly choices for industrial materials. | | Achievem | ent 4 | | the properties | ted to | Understand the physical quantities related to magnetism, along with units, and understand and can explain the properties of various magnetic materials. | | | Do not understand the physical quantities related to magnetism, along with units, and do not understand and cannot explain the properties of various magnetic materials. | | | | ment Obj | jectives | | | | | | | Teachin | g Metho | <u>d</u> | | | | | | | | Outline | | composite
of concre
for enviro
explaining
by Hiraish | e. (8 hours, taug
te (a typical mat
Inmental issues.
I materials' envir
II.) (4) Understa | tht by Morishita.)
erial for urban con
(6 hours, taught b
ronmental impact | (2) Explain the lastruction), mair y Takeda.) (3) and the propertitics and propert | mecha
ntenand
Deeper
ies of v | nical prope
ce and con
n understa
various ind | regate and particle dispersed erties and reinforcement methods trol techniques, and consideration nding by individually studying and ustrial materials. (8 hours, taught gnetic materials and explain their | | The class will be held in an omnibus format by four faculty member Weeks 1-4 (Morishita): Give lectures on the effects of microscopic learn each other on some engineering applications of heterogeneo Weeks 5-7 (Takeda): Students will learn about the mechanical promethods, maintenance and control techniques, and consideration Weeks 8-11 (Hiraishi): After explaining choices of industrial material environmental impact according to a Life Cycle Assessment (LCA), related to their graduate study's special research and use PowerPodisadvantages, and environmental impact. Weeks 12-15 (Kajimura): Students will learn the physical quantitie and become able to understand and explain the properties of various investigate application cases. | | | | | | properties us materia operties of for enviror ials and the students bint to present the present is the present in the present in the present is the present in the present in the present in the present is the present in | als and anisotropic materials. concrete, reinforcement mental issues. e difference in their will select one industrial material sent its advantages, to magnetism along with units, tic materials. Students will also | | | Notice | | guarantee
assignme | ed in classes and
nt reports. | amount to 90 hou
the standard self-
more of classes w | -study time requ | uired fo | or pre-stud | include the learning time
y / review, and completing | | Charact | eristics c | of Class / | <u>Division in Le</u> | arning | T | | | <u></u> | | ☑ Active | Learning | | ☑ Aided by IC | T | ☑ Applicable to a positive positiv | o Remo | ote Class | ☐ Instructor Professionally
Experienced | | | | | | | | | | | | Course | Plan | <u> </u> | | | | | | | | | | | heme | | | Goals | | | | 1st | | 1st L | Strength and Rigi
earn about fund
igidity of materia | amental concept of | of strength and | Under
mater | stand the lials, and ca | basics of strength and rigidity of an explain some examples. | | Semeste
r | 1st
Quarter | 2nd (| Stress-strain rela
Morishita) | tion and elastic molelastic moduli for a | | | xplain som
noduli. | e types of elastic anisotropy and | | | | 3rd | Particle dispersed about the theory or related to polycrys dispersed composi | on macroscòpic e
stalline aggregate | elastić moduli | Can explain the r
polycrystalline ag
composite. | | | | |----------------------|----------------|------------|---|---|---|---|---------------------------------------|--------------------------------------|--| | | | | Anisotropy of vario
(Morishita) | ous kinds of mate | erials | Can explain the | onginooring ann | dication on como | | | | | | Ĝive a présentation
application in an h
anisotropic materia | eterogeneous m | e of engineering
aterial and | kinds of heteroge | | olication on some tropic materials. | | | | | 5th | Introduction to cor
Learn about concre
construction), its c
mechanical proper | ete (a typical ma
constituent mate | | Can explain concrete's constituent materials and mechanical properties. | | | | | | | 6th | Durability, mainter
for concrete struct
Learn how to reinf
how to deal with d
durability. | ures (Takeda)
orce concrete st | ructures, and | Can explain the maintenance and control techniques for concrete structures. | | | | | | | 7th | technologies in the construction field | | | | to deal with en
w technologies | | | | | | 8th | Materials and envirus
Learn about the restindustrial materials
an LCA (Life Cycle | esults of analyzin
s' environmental | g various ´
impact using | Can analyze the difference between various industrial materials by means of an LCA (Life Cycle
Assessment). | | | | | | | 9th | Study a material's
Give a presentatio
industrial material | n on the chàract | | Can explain the applications, advantages, and disadvantages of an industrial material related special research. | | | | | | | 10th | Study a material's
Give a presentation
industrial material
materials. | n on the charact | eristics of an | Can explain the applications, advantages, and disadvantages of an industrial material related to special research. | | | | | | | 11th | Study a material's
Give a presentation
industrial material | n on the charact | ishi)
eristics of an | Can explain the a disadvantages of special research. | | vantages, and
naterial related to | | | | | 12th | An outline of magr
Outline the develo
materials and their
about specific case
fields today. | pment history of
r characteristics. | magnetic
Also learn | Outline the devel
materials and the
explain the speci
many fields today | eir characteristi
fic cases that a | cs. Can also | | | l I = | 2nd
Quarter | 13th | Physical properties employed) Learn about the baphysical properties learned in the field use and application respective areas of understanding of t | asics of magnetis
of magnetic ma
d of electricity, et
n cases of intere
f specialty and d | sm and the
aterials as
cc. Investigate
st in the | Learn about the basics of magnetism and the physical properties of magnetic materials as learned in the field of electricity, etc. Can investigate use and application cases of interest in the respective areas of specialty and deepen understanding of their principles. | | | | | | 14th
15th | | Principles and appl
sensors that use n
employed)
Introduce principle
magnetic sensors i
and also introduce
intelligent magneti | nagnetic materia
es and application
that use magnet
e intelligent mate | ls (Re-
n examples of
ic materials, | Can explain the principles and application examples of magnetic sensors that use magnetic materials, and explain intelligent materials and intelligent magnetic materials. | | | | | | | | Applications exam _l
employed)
Compile into a rep
investigation into r
area of specialty. | ort the results of | f an | Can compile into a report and explain the results of an investigation into magnetic materials in one's own area of specialty. | | | | | | | 16th | Final exam | | | | | | | | Evaluatio | n Meth | od and W | /eight (%) | | T | | <u> </u> | | | | | (1)
Pre | esentation | Presentation | Mutual
Evaluations
between
students | Behavior | Portfolio | Other | Total | | | 6 1 1 1 | 25 | | 0 | 0 | 0 | 0 | 0 | 25 | | | Subtotal | | | 0 | 0 | 0 | 0 | 0 | 10 | | | Basic
Proficiency | 10 | | 0 | | 1 | | | | | | Basic | 10 | | 0 | 0 | 0 | 0 | 0 | 10 | | | А | Akashi Co | ollege | Year | 2024 | | Course
Title | Information Processing | | | |-------------------------------------|--|--|--|---|--|---|---|--|--| | Course | Informa | tion | | | | | | | | | Course Co | ode | 6011 | | | Course Categor | y Speciali | zed / Elective | | | | Class For | mat | Lecture | | | Credits | Academ | ic Credit: 2 | | | | Departme | ent | Mechani
 Enginee | ical and Electronic
ring | c System | Student Grade Adv. 1st | | | | | | Term | | First Sei | | | Classes per We | ek 2 | | | | | Textbook | | | | | | | | | | | <u>reacning</u>
Instructor | Materials | INOLIE | Kazunari,SUYAMA |
. Taikoi | | | | | | | | Objectiv | • | Nazariari, 30 TAME | Taikei | | | | | | | (1) Have
(2) Under
tools (D). | knowledge
rstand the | e of the var
characteris | | s that a computer lats, and can convers in a way that is e | | | ate choices (H).
d process them using appropriate | | | | Rubric | | | | | | | | | | | | | | Ideal Level | | Standard Level | | Unacceptable Level | | | | Achievem | nent 1 | | Fully understated formats that cand their man protection. | computers handle, | Understand the that computers their managem protection. | handle, and | Do not understand the data formats that computers handle and their management and protection. | | | | Achievem | nent 2 | | Fully understa
prepare techn
documentatio
presentation r
various techni | nical
n and
materials, and | Understand how
technical docum
presentation m
various techniq | nentation and aterials, and | Do not understand how to prepare technical documentation and presentation materials, and various techniques. | | | | Achievem | nent 3 | | Fully understa
calculations an
using Excel ar | nd processing | Understand sta
calculations and
using Excel and | processing | Do not understand statistical calculations and processing using Excel or ipyson. | | | | Assigne | ed Depar | tment Ol | bjectives | | | | | | | | Teachin | ng Metho | od | | | | | | | | | Outline | | create the includes | specialty. Improving the ability to
sk for conveying technology. This
nputers to material creation using
n application technology and | | | | | | | | Style | | will be t
From we
Office a | aught in a lecture
eek 3 to week 15 | e-style format.
, lessons on creatir | ng technical docu | ımentation and | and protection in weeks 1 and 2
presentation materials using MS
Il be taught in lecture-style and | | | | Notice | | This cou
guarant
assignm
take the | urse's content will
eed in classes and
ent reports. Sinc
e course. | d the standard self | -study time requ
quisite knowledg | ired for pre-stue required, stu | s include the learning time
Idy / review, and completing
dents from all departments can | | | | Charact | aristics | - | Division in Le | | will flot be eligible | e ioi evaluatioi | | | | | | Learning | or Class / | ☑ Aided by I | | ☑ Applicable to | Remote Class | ☐ Instructor Professionally Experienced | | | | | D1 | | | | | | | | | | Course | Plan | 1 | I_, | | Т | 0 1 | | | | | | | 1 | Theme | formata that === | autoro bandi- | Goals | a data formate that committee | | | | | | 1st | and their charac | formats that comp
teristics. | Juleis Hallüle | | e data formats that computers
ir characteristics. | | | | | | 2nd | Explain the inter
networks of com | nal structure, stora
puters. | age, and | networks of co | <u> </u> | | | | | 3rd Explain styles, chapters, section fonts, and indents found in docu | | | | paragraphs,
ent creation. | paragraphs, fo
creation. | les, chapters, sections,
nts, and indents found in documer | | | | 1st
Quarter | | | and tables, and | | | pictures and ta | ste link and paste metafile for
bles, and cross-reference. | | | | 1st Quarter 5 | | 5th | Create and subn
Word | nit technical docum | ientation using | Create and sub
Word | omit technical documentation using | | | | | Semeste
r 6th | | Create technical Describe how to templates, and s | ing PowerPoint.
agrams, | Understand ho | al documentation using PowerPoint
w to create different diagrams,
slides / masters. | | | | | | 7 | | | emplates, and slides / masters. xplain effective techniques and playback, icluding image, audio, and video data. | | | templates, and slides / masters. Understand effective techniques and playback, including image, audio, and video data. | | | | | | 7th | Explain effective including image, | techniques and pla | ayback,
data. | including imag | ective techniques and playback,
e, audio, and video data. | | | | | | 7th
8th | including image,
Create technical | techniques and planting audio, and video of presentation documents | data. | including imag
Create technic | e, audio, and video data. al presentation documentation | | | | | | 8th | including image,
Create technical
using PowerPoin | techniques and pla
audio, and video of
presentation docu
t | data.
mentation | including imag
Create technic
using PowerPo | e, audio, and video data.
al presentation documentation
int | | | | | 2nd
Quarter | | including image,
Create technical
using PowerPoin
Explain various f | techniques and planting audio, and video of presentation documents | data.
mentation
analysis. | including imag
Create technic
using PowerPo
Understand va | e, audio, and video data. al presentation documentation | | | | | 12th | Explain file pro | tection, encryp | otion, and security. | Can protec | Can protect, encrypt, and secure files. | | | | |----------------------------|------------|-------------------------------|---------------------------------|----------------------|------------------------|---|-----------------------|--|--| | | 13th | Explain a cloud development e | l-assisted inter
nvironment. | active program | | d a cloud-assisted
nt environment. | I interactive program | | | | | 14th | Explain databa execution. | se analysis tha | at used interactive | Understand interactive | d database analys execution. | sis that used | | | | | 15th | Summary | | | Understand | d the summary. | | | | | | 16th | No final exam | | | No final ex | No final exam | | | | | Evaluation I | Method and | l Weight (%) | | | | | | | | | | | Assignments | 5 | | | | Total | | | | Subtotal | 0 | 100 | 0 | 0 | 0 | 0 | 100 | | | | Basic
Proficiency | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | |
Specialized
Proficiency | 0 | 100 | 0 | 0 | 0 | 0 | 100 | | | | Cross Area
Proficiency | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | А | kashi Co | ollege | Year | 2024 | | Course
Title | Analytical Mechanics | | | |------------------------|-------------|---|---|---|--|--|--|--|--| | Course | Informa | tion | | | | | | | | | Course Co | ode | 6012 | | | Course Category | / Specializ | ed / Elective | | | | Class Forr | mat | Lecture | | | Credits | Academic Credit: 2 | | | | | Departme | ent | Mechanical
Engineerin | and Electronic | System | Student Grade | e Adv. 1st | | | | | Term | | First Seme | | | Classes per Wee | ek 2 | | | | | Textbook | | | | | | • | | | | | Teaching | | NAKANISH | I Hirochi | | | | | | | | Instructor | Objectiv | 1 | 1 HIIOSIII | | | | | | | | (1) Under
(2) Under | stand the | Lagrangian f | formulation
methods of ana
formulation (ca | lysis by Lagrangia
nonical formulatio | n formulation. | | | | | | Rubric | | | • | | , | | | | | | | | | Ideal Level | | Standard Level | | Unacceptable Level | | | | Achievem | ent 1 | | Fully understar formulation of mechanics. | | Understand the
Lagrangian med | | Do not understand the formulation of Lagrangian mechanics. | | | | Achievem | ent 2 | | | nd the methods
_agrangian | Understand the analysis by Lagr formulation. | | Do not understand the methods of analysis by Lagrangian formulation. | | | | Achievem | ent 3 | | Fully understar formulation of mechanics. | | Understand the
Hamiltonian me | | Do not understand the formulation of Hamiltonian mechanics. | | | | Assigne | d Depar | tment Obje | ectives | | | | | | | | Teachin | g Metho | d | | | | | | | | | Outline | | useful and
for each ob | powerfull in va
pject to be hand
analytic mechan | stigated mathematically. It is
to consider a coordinate system
s coordinate system will be. By
escriptions with good prospects | | | | | | | Style | | The studer | d necessary sub
ts are expected
udents easy to | to solve the prac | rated through the
ctice problems wi | eory lectures, fo
th their own ha | ollowed by practice lectures.
nds, and to explain their solutions | | | | Notice | | This course
guaranteed
assignmen
time, and s | rse's content will amount to 90 hours of study in to
led in classes and the standard self-study time requent reports. Be aware that class time makes up a sign students are advised to thoroughly pre-study or rewho miss 1/5 or more of classes will not be eligible. | | | red for pre-studenall percentage eview. | dy / review, and completing of the overall expected learning | | | | Charact | orieties d | • | | | | | | | | | ☑ Active | | DI CIASS / L | / Division in Learning ☐ Aided by ICT ☑ Applicable t | | | Remote Class | ☐ Instructor Professionally Experienced | | | | | | | | | | | | | | | Course | Plan | | | | | | | | | | | | Th | neme | | | Goals | | | | | | | 1st Th | ne principle of le | east action | | _earn the basic
action. | s about the principle of least | | | | | | 2nd Ex | amples of Lagr | ange's equations | , I | | e the examples of Lagrange's | | | | | | | ne principle of vinciple | irtual work and d | 'Alembert's I | earn the basic | s about the principle of virtual mbert's principle. | | | | | 1st | 4th Ex | amples of Lagr | ange's equations | | earn and solve | e the examples of Lagrange's | | | | | Quarter | 5th Co | nservation law | S | | • | s of conservation laws. | | | | | | 6th Ex | amples of cons | ervation laws | | | e the examples of conservation | | | | 1st | | 7th In | tegration of the | e equations of mo | tion | Learn the basics of integration of the equations o motion. | | | | | r | Semeste 8th | | camples of integotion | gration of the equ | ations of | | the examples of integration of the | | | | | | | nall oscilations | | | • | s of small oscilations. | | | | | 10th | | amples of smal | loscilations | | | the examples of small oscilations. | | | | | 11th | | otion of a rigid l | oody | | | s of motion of a rigid body. | | | | | 2nd | 12th Ex | amples of rigid | body motions | | _earn and solve
notions | the examples of rigid body | | | | | Quarter | 13th Mo | otion in a non-i | nertial frame of re | oference I | | s of motion in a non-inertial frame | | | | | | | ample of motio | n in a non-inertia | I frame of | earn and solven | the example of motion in a non-
f reference. | | | | | | h | anonical equati | ons | | | s of canonical equations. | | | | 16th | Final exam | | | | | | | | | | |----------------------------------|-------------|----------|-------|--|--|--|--|--|--|--| | Evaluation Method and Weight (%) | | | | | | | | | | | | | Examination | Exercise | Total | | | | | | | | | Subtotal | 80 | 20 | 100 | | | | | | | | | Basic Proficiency | 0 | 0 | 0 | | | | | | | | | Specialized Proficiency | 80 | 20 | 100 | | | | | | | | | Cross Area Proficiency | 0 | 0 | 0 | | | | | | | | | А | kashi Co | ollege | Year | 2024 | | Cou | | Inclusive Design | |----------------------|--|-------------------------|--|---|--|--|--------------------|---| | Course | Informa | tion | | | | | | | | Course Co | | 6013 | | | Course Categor | <i></i> | | red / Elective | | Class For | mat | Lecture | !! =!: | - Contain | Credits | Ac | Academic Credit: 2 | | | Departme | ent | Engineer | cal and Electronic
ring | c System | Student Grade | Ad | v. 1st | | | Term | | First Sen | | | Classes per We | | 0: 0 = | | | Textbook
Teaching | | 『インク <i>.</i>
 クス ユー | ルーシブデザイン
·ザー情報集・事例 | ハンドブック』、Ÿ
 集』、国際ユニバ− | ₽井康之編著、財団
−サルデザイン協議 | 法人たんほ
会編、『I | まぼの
【 CF』 | 家、2006年』、『IAUD UDマトリッ
 厚労省資料他 | | Instructor | | | | A Naoki,OKAMURA | | | | | | | Objectiv | | | | | | | | | (2)ユ- | -ザー参加型 | 型手法につい | インクルーシブデ
ての理解
を包括的に援助す | ザインの理解
るための、確かな知 | 識と実践力及び人 | 間性の涵養 | を目標 |
 とする。 | | Rubric | | | | | _ | | | | | | | | 理想的な到達レ | | 標準的な到達レイ | | | 未到達レベルの目安 | | 評価項目1 | | | イングルーシブ
 十分理解し説明 | ブザインについて
1できる | インクルーシブラ
 理解し説明できる | rサインに [*]
る | ついて | インクルーシブデザインについて
理解し、説明できない。 | | 評価項目2 | | | 複数の知識を十
一つでなく複数
できる。 | -分に応用し、解が
のアイデアを提示 | 複数の知識を応用なく複数のアイラ | 月し、解が [.]
デアを提示 ⁻ | 一つで
できる | 複数の知識を応用し、解が一つで
なく複数のアイデアを提示できな
い。 | | 評価項目3 | | | 多様なユーザー
し、説明できる | -特性を十分に理解
5 | 多様なユーザー特
できる。 | 持性を理解 | し説明 | 多様なユーザー特性を理解し、説
明できない。 | | | | tment Ob | jectives | | | | | | | Teachin | ig Metho | 1 | | 1 / 1 | | - | | * | | Outline | インクルーシブデザインとはこれまで除外されて来た(エクスクルード)ユーザーを包含し(インクルートジネスとして成り立つメインストリームのデザイン開発を目的とした考え方で、特に最近では、UX(ユーザイノベーションの有効な手法としても注目されている。本論では、具体的な医療・福祉分野等での事例研究をヨーロッパにおけるインクルーシブデザイン、日本におけるインクルーシブデザイン、およびそのプロセスでザー参加型手法について、WSなどを交えながら理解することを目標とする。岩田は、28年間デザイナーとし村は、25年間、バリアフリー建築を専門とする1級建築士として建築設計事務所を主宰。これらの経験を活たうものである。 | | | | | | | に最近では、UX(ユーザー体験)、
福祉分野等での事例研究を題材に、
ン、およびそのプロセスであるユー
は、28年間デザイナーとして従事、岡 | | Style | | 授業は、
要な資料
(学芸出 | は講義で適宜配布 | 義形式とワークショ
する。参考図書:平 | ップ等の演習方式 [*]
井他「インクルー [*] | で対面およ
シブデザイ | びオン
ン: 社 | ・ラインによっておこなう。授業に必
会の課題を解決する参加型デザイン」 | | Notice | | 90時間に | 相当する学習内容
ある。
 象としない欠席条 | である。出身学科を | と問わず、できるだ | け平易に授 | 経業し、 | に標準的な自己学習時間の総計が、
グループによるワークショップも行
な塚)とオンライン(外部講師)を併 | | Charact | eristics | of Class / | Division in Le | earning | | | | | | ☑ Active | Learning | | ☑ Aided by I | СТ | ☑ Applicable to | Remote | Class | ☐ Instructor Professionally Experienced | | Course | Plan | | | | | | | | | | | | Theme | | | Goals | | | | | | |)世界のアクセイ
までのデザインと
のか?なぜその必 | ザインとは何か?①
シブルデザインを理
インクルーシブデサ
要性があるのかにつ
っしょに考えていく | [解する。」これ
デインは何が違う
Oいて具体的な事 | 世界のアク
ニバーサル | フセイミレデザイ | シブルデザイン、バリアフリーからユ
インを理解する。 | | | | | インクルーシブデ
塚) | ザインとは何か?② |) (外部講師、大 | | | | | | | 2nd | インクルーシブデ
ザインやバリアフ | ザインの成立背景や
リーなど類似の概念
での具体的な事例を
。 | えとの相違点につ | インクルー | ーシブラ | デザインの概念・方法論を理解する。 | | | | 3rd | | こよる校内バリフリ
具を用いて、明石高 | | 高齢者、視
一の特製を | | 害者などの疑似体験によって各ユーザ
する。 | | 1st
Semeste
r | 1st
Quarter | 4th | 、大塚)
企業では経営理念
っている。企業経 | ンクルーシブデザィ
やビジョンに基づい
営とモノづくりの関
を考えながら企業で
て考える。 |

 て商品開発を行
 ほや市場との関 | オフィス空
とにユーち | 空間では | Dインクルーシブデザインの実例をも
ナーチの方法を学ぶ。 | | | | 5th | 、大塚)
オフィスとは何か
があり、どのよう
て、オフィスを計 | ンクルーシブデザィ
、オフィス空間にに
なプロダクトが存在
画し、空間をデザィ
ないのかを考える。 | ↓
はどのような機能
Fするのか。そし | | | Dインクルーシブデザインを当事者と
とができる。 | | | | 6th | 、大塚)
オフィスで使うプ
が、それらの商品 | ンクルーシブデザィ
ロダクトには文具や
がどのような考えた
いるのかを事例を基 | o家具などがある
5、プロセスを経 | オフィス空
理解する。
 | 2間での | Dインクルーシブデザインプロセスを | | 7t | th 営 | 大塚)
段勉強している教 | 室や学校空間で気 | づいたことを出 | 社会課題を行動観察
きる。 | 察によって設定でる | き、課題解決がで | |----------|----------------------------
---|--|-------------------------------|---|--------------------|----------| | 8t | チブ
th 社 | ームメイド・デザ
リス))
会で実際に実践し
の事例を紹介しな | イン1 (岩田直樹
ている「チームメ-
がら、実際に体験: | (アトリエ・カ
イド・デザイン
をする。「グラ | 参加と共創のデザイ | インについて、理解 | 解する。 | | 9t | チ
チ
た
と
た
を | ームメイド・デザームメイド・デザイン・
ームメイド・デザイ学生による学科経
おこなう。実際に | イン2 (岩田)、大
インによる「グラ」
3介パンフレット・ | 塚
フィックデザイ
DVD)」の実践 | | | ィックデザイン | | 10 | 高
イ
Oth
環 | 齢者・障害者の住
(ス)、大塚
(齢者・障害者の住
境整備のポイント | 環境について、各別を実践事例から考 | 、
疾患ケースの住 | バリアフリーと住り
環境整備の基礎を5 | 景境の基礎及び重望
里解する。 | 要性を認識し、住 | | 1: | - " | 察して、身体に障 | 害を持つ人の生活 | を包括的に捉え | インクルーシブなん。 | バリアフリー住宅警 | 整備の基礎を学ぶ | | 2nd 12th | | 。
が国の当事者参画
」、兵庫県福祉の
ちづくりアドバイ | の「ユーザーエキ <i>」</i>
まちづくり条例に | スパートシステ
おける「福祉の | | おける福祉のまちて | づくりについて理 | | 13 | ا
ع
ع
ع | 大塚)
アスピレーション
」というテーマで
、ワークショップ | のデザイン : デザ [.] | インができるこ | | | イン手法によって | | 14 | 4th し | 大塚)
『ロセスにおいて、.
『可視化を行う。ユ
『中から得られた気』 | ニーズの中から重!
ーザーとの直接の | 要な課題を抽出やりとりや観察 | 社会課題を抽出・!
う。 | リサーチし可視化し | ン、課題解決を行 | | 15 | 5th (| (外部講師・大塚) | | | | | デザインによる解 | | 1 | | | | | | | | | | | Presentation | Mutual
Evaluations
between
students | Behavior | Portfolio | Other | Total | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | | | 7th 音し定 子 元社 7th 音し定 子 元社 7th 10th 10th 11th 12th 13th 15th 16th | Ath | 大塚 | 7th 普段勉強している教室や学校空間で気づいたことを出し合って、グループでディスカッションし、課題を設定。そしてアイデアを出し合う。 | 大塚 一切 | 大塚 | | А | kashi Co | ollege | Year | 2024 | | Course
Title | Off-Campus Practical
Training | | |--|---|---|---|--|--|--|---|--| | Course | Informa | tion | · | • | | | | | | Course Co | ode | 6014 | | | Course Category | / Specializ | zed / Compulsory | | | Class Forr | mat | Practical | training | | Credits | School (| Credit: 2 | | | Departme | ent | Mechani
Engineei | cal and Electronic | c System | Student Grade Adv. 1st | | | | | Term | | Year-rou | | | Classes per Wee | ek 前期:2 名 | ら
と
は
は
は
は
は
は
は
は
は
は
は
は
は
は
は
は
は
は | | | Textbook | and/or | 1001100 | | | Tolusces per Tree | 13379312 12 | 0.0112 | | | Teaching | | | | | | | | | | Instructor | | , | | | | | | | | (1) Can e | Objectiv
experience | some of the | e actual technica | I activities at the h | ost companies an | d work on solv | ving problems with the necessary | | | assistance
(2) Can w | e.
vork collab | oratively in | the assigned wo | orkplaces and thinked empirically. | freely. | | | | | Rubric | ероп епес | Lively Wilat | . Has been learne | ed empirically. | | | | | | | | | Ideal Level | | Standard Level | | Unacceptable Level | | | Achievement 1 actual technical activities at the host companies and actively work on solving problems with with solving problems with the actual technical activities at the host companies and work on solving problems with the solving problems with the actual technical activities at the host companies and work on solving problems with the | | | | | | | Cannot experience some of the actual technical activities at the host companies and work on solving problems with the necessary assistance. | | | Achievem | Can work collaboratively in the assigned workplace and actively think freely. Can work collaboratively in the assigned workplace and think freely. Can work collaboratively in the assigned workplace and think freely. Can work collaboratively in the assigned workplace and think freely. | | | | | | | | | Achievem | ent 3 | | Can effectivel appropriately been learned | eport what han pirically. | Cannot effectively report what has been learned empirically. | | | | | Assigne | d Depar | tment Ob | ojectives | | | | | | | Teachin | ig Metho | | rse is set un as r | part of an introduct | ion for an interns | hin and sandw | ich system. The aim is to gain a | | | Outline | | sense of | practical techno | logy through techn
from technical exp | iical experience in | companies or | government agencies, etc., and to | | | Style | | Follow th | ne host company | instructor's instru | ctions. | | | | | department principal or with the faculty of basic engineering research or special research. During the internship period, students should actively try to acquire technical and other skills, and dress and us language that is appropriate for an intern. The internship period shall be at least 10 working days of summer holidays, etc. The graduate study internship may include up to 15 hours of preliminary gui (manner lesson, preliminary research on the host company), debrief sessions, and time for preparir with a total of 90 hours. If it is determined that conducting the internship at a company or other institution will be difficult of things like social
circumstances, and if it is necessary to provide reasonable consideration for studer internship will be replaced with research on companies, etc., related to the field of graduate study. case, the evaluation will consist of an evaluation by research advisers for students' research on cometc. (30%), the research report (30%), and outcomes debrief session results (40%). In the Course and Aims and the Rubric Evaluation items, the following items should be replaced as follows: (1) "Experience some of the actual technical activities at the host companies, etc." as "conduct resestudy using the specified methods of the companies, etc., of research target and to obtain advice from members or supervising faculty member of research there." (2) "Work collaboratively in the assigned workplace" as "contribute to the activities of company of tresearch." (3) "What has been learned empirically" as "one's own research result." | | | | | | er skills, and dress and use least 10 working days during the hours of preliminary guidance ins, and time for preparing reports, titution will be difficult due to consideration for students, the field of graduate study. In that sudents' research on companies, its (40%). In the Course Objectives placed as follows: es, etc." as "conduct research and et and to obtain advice from the | | | | Charact | eristics | of Class / | Division in Le | earning | | | | | | ☑ Active | Learning | | ☐ Aided by I | СТ | ☑ Applicable to | Remote Class | ☐ Instructor Professionally Experienced | | | | DI | | | | | | | | | Course | Plan
 | | Th | | Τ. | | | | | | | Theme Goals 1st Guidance Reminders about precautions of internship | | | | | | | | | | 2nd | Internship | | (| Get individual t | e host company, etc.
echnical experience at the host | | | 1st
Quarter 4th
5th | | | Same as above | | | company.
Same as above | <u> </u> | | | | | 4th | Same as above | | 9 | Same as above | 9 | | | | | | Same as above | | | Same as above | | | | 1st
Semeste | | Same as above | | 9 | Same as above | | | | | | | Same as above | | S | Same as above | 2 | | | | | | | Same as above | | | Same as above | 2 | | | | | | Same as above | | 9 | Same as above | 2 | | | | 2nd | | Same as above | | | Same as above | | | | | Quarter | | Same as above | | | Same as above | | | | | | | Same as above | | | | | | | 12th
13th | | | Same as above | | 10 | Same as above Same as above | | | | | | 14th | Same as above | | | Same as above | | | | |------------|--------------|-------|--|--------|---------------|------------------------------------|--|--|--| | | | 15th | Same as above | | | Same as above | | | | | | | 16th | No final exam | | | | | | | | | | 1st | Same as above | | | Same as above | | | | | | | 2nd | Same as above | | | Same as above | | | | | | | 3rd | Same as above | | | Same as above | | | | | | 3rd | 4th | Same as above | | | Same as above | | | | | | Quarter | 5th | Same as above | | | Same as above | | | | | | | 6th | Same as above | | | Same as above | | | | | | | 7th | Same as above | | | Same as above | | | | | 2nd | | 8th | Same as above | | Same as above | | | | | | Semeste | | 9th | Same as above | | | Same as above | | | | | | | 10th | Same as above | | | Same as above | | | | | | | 11th | Same as above | | | Same as above | | | | | | 4th | 12th | Same as above | | | Same as above | | | | | | Quarter | 13th | Same as above | | | Same as above | | | | | | | 14th | Same as above | | | Same as above | | | | | | | 15th | Internship debrief ses | sion | | A presentation on the internship . | A presentation on the overall outcomes of the internship . | | | | | | 16th | No final exam | | | | | | | | Evaluat | ion Meth | od an | d Weight (%) | | | | | | | | | | | Evaluation of the training destination | Report | | Debriefing session | Total | | | | Subtotal | | : | 30 | 30 | | 40 | 100 | | | | Basic Prof | ficiency | (| 0 | 0 | | 0 | 0 | | | | Specialize | ed Proficier | ncy : | 30 | 30 | | 40 | 100 | | | | Cross Are | a Proficier | псу | 0 | 0 | | 0 | 0 | | | | А | kashi Co | ollege | Year | 2024 | | Course
Title | Preliminary Research
Studies | | |---|---|---|---|--|---|---|---|--| | Course | Informa | tion | · | · | | | | | | Course Co | ode | 6015 | | | Course Category | y Speciali | zed / Compulsory | | | Class Forr | mat | Seminar | | | Credits | School Credit: 4 | | | | Departme | ent | Mechani
Engineei | cal and Electroni
ring | c System | Student Grade | Grade Adv. 1st | | | | Term | | Year-rou | | | Classes per Wee | ek 4 | | | | Textbook | | | | | | | | | | Teaching
Instructor | | | | | | | | | | | Objectiv | es | | | | | | | | (1) Can ir
perspectiv
(2) Can si
(3) Can e | ntegrate a | nd deepen o | expertise, and ex
blems.
esearch results a
I research indepe | camine it theoretically
s reports and poste
endently and contin | ally, systematicall
ers, communicate
nuously. | y, practically, ethem verbally | and creatively from a wide to others, and discuss them. | | | Rubric | | | T | | Ι | | | | | | | | Ideal Level | | Standard Level | | Unacceptable Level | | | Achievem | ent 1 | | Can integrate expertise, and theoretically, practically, and wide perspessolving proble | d examine it
systematically,
ad creatively from
ective toward | Can integrate an expertise, and e theoretically, sy and practically f perspective tow problems. | examine it
stematically,
from a wide | Cannot integrate and deepen expertise, and examine it theoretically, systematically, and practically from a wide perspective toward solving problems. | | | Achievem | Can fully summarize obtained research results as reports and posters, communicate them verbally in a comprehensible manner to others, and discuss them. | | | | | obtained
as reports and
inicate them
rs, and discuss | posters, communicate them | | | Achievem | Can fully engage in I research independer continuously. | | | | Can engage in le
research indepe
continuously. | earning and
Indently and | Cannot engage in learning and research independently and continuously. | | | Assigne | d Depar | tment Ob | ojectives | | | | | | | Teachin | g Metho | od | | | | | | | | Outline | | and elec | tronic system en
The aim is to acc | gineering fields at | a higher level und | der the superv | nduct research in the mechanical ision of the faculty member in oundation for graduate study's | | | Style | | In the commember decided exploring | ourse, as it is par
s in charge will f
after discussing
g the issues give
s will carry out ea | irst present planne
with students with
n, thinking about t | d themes for sett
utmost respect to
he approach metl | ing up a resea
o their enginee
hods, right up | esearch voluntarily, the faculty
rch theme. The theme will then be
ering interests. Furthermore, from
to answering the questions,
their own judgment as much as | | | Notice | | This cou
guarante
assignm
cultivate
passing | eed in classes an
ent reports. Pror
d in the departm | l amount to 180 ho
d the standard self
note research inde
nent. Other condition | ours of study in to
-study time requi
pendently and ac
ons for missing cl | otal. These hou
ired for pre-stu
tively based on
asses that will | rs include the learning time
udy / review, and completing
n the background knowledge
make students ineligible for a | | | Charact | eristics | | Division in L | earning | | | | | | ☑ Active | | | ☐ Aided by I | | ☑ Applicable to | Remote Class | ☐ Instructor Professionally Experienced | | | Course | Dlan | | | | | | | | | Course | riaN
 | | Theme | | Ι, | Goals | | | | | | 1st | Setting the rese | mber in charge wil | Lovelain and | | research themes independently aching staff. | | | | Individual research 2nd Carry out separately under superv faculty member in charge. | | | | sion of each | Can independe
studies and res | ently and continuously conduct search under each teaching staff. | | | 3rd | | faculty member in charge. Individual research Same as above | | | Same as above | | | | | 1st | 1st
Quarter | 4th | Individual research
Same as above | | | Same as above | 2 | | | Semeste r 5th | | Same as above Individual research Same as above | | | Same as above | 2 | | | | 6th | | 6th | Individual resear
Same as above | rch | | Same as above | | | | | | 7th | Individual resear
Same as above | rch | | Same as above | 2 | | | 8th | | | Individual resea
Same as above | rch | | Same as above | | | | | 2nd
Quarter | 9th | Individual resea
Same as above | rch | ! | Same as above | 2 | | | 10th | | | | | | | | | | | |
--|--------------------------|-------------|------|---------------------|---------------------|----------|--|---------------|-------|--|--| | 1111 | | | 10th | | rch | | Same as abov | e | | | | | 13th | | | 11th | | rch | | Same as abov | e | | | | | 14th | | | 12th | | rch | | Same as abov | Same as above | | | | | 15th | | | 13th | | rch | | Same as abov | e | | | | | 15th Same as above Same as above 1st No final exam | | | 14th | | rch | | Same as abov | e | | | | | 1st Individual research Same as above | | | 15th | | rch | | Same as abov | e | | | | | Same as above abov | | | 16th | No final exam | | | | | | | | | Same as above abov | | | 1st | | rch | | Same as abov | e | | | | | Ath Quarter Same as above | | 2nd | | Individual resea | rch | | Same as abov | e | | | | | Ath Quarter Same as above | | 3rd | | Individual resea | rch | | Same as abov | e | | | | | Quarter Same as above Sam | | 4th | | Individual resea | rch | | Same as abov | e | | | | | Same as above abov | | Quarter 5th | | Individual resea | rch | | Same as abov | e | | | | | Tth | | 6th | | Individual resea | rch | | Same as abov | e | | | | | Same as above Same as above | | 7th | | Individual resea | rch | | Same as abov | e | | | | | Semeste r 9th Individual research Same as above 10th Individual research Same as above 11th Individual research Same as above 12th Individual research Same as above 12th Individual research Same as above 13th Individual research Same as above 14th Individual research Same as above 15th Presentation review meeting 15th Presentation review meeting 16th No final exam Evaluation Method and Weight (%) Examination Presentation Report Autonomy Portfolio Other Total Subtotal 0 30 40 30 0 0 0 100 Basic 0 10 30 40 30 0 0 0 100 | | and 8th | | Individual resea | rch | | Same as abov | e | | | | | 10th Individual research Same as above Same as above 11th Individual research Same as above 12th Individual research Same as above 12th Individual research Same as above 13th Individual research Same as above 13th Individual research Same as above 14th Individual research Same as above 14th Individual research Same as above 15th Presentation review meeting Can summarize obtained research results reports and posters, communicate them v to others, and discuss them. 16th No final exam Evaluation Method and Weight (%) Examination Presentation Report Autonomy Portfolio Other Total Subtotal 0 30 40 30 0 0 100 Basic 0 10 30 40 30 0 0 100 Basic 0 10 10 0 100 Can summarize obtained research results reports and posters, communicate them v to others, and discuss them. | | | 9th | Individual resea | | | | e | | | | | Same as above abov | | | 10th | Individual research | | | Same as above | | | | | | Ath Quarter 13th Same as above | | | 11th | | Individual research | | | Same as above | | | | | Quarter 13th Individual research Same as above Same as above 14th Individual research Same as above Same as above 15th Presentation review meeting Can summarize obtained research results reports and posters, communicate them v to others, and discuss them. 16th No final exam Evaluation Method and Weight (%) Examination Presentation Report Autonomy Portfolio Other Total Subtotal 0 30 40 30 0 0 100 Basic 0 10 30 10 0 40 | | 4th | 12th | | rch | | Same as above | | | | | | Same as above Same as above Same as above | | _ | 13th | | rch | | Same as above | | | | | | 15th Presentation review meeting reports and posters, communicate them v to others, and discuss them. | | | 14th | | rch | | Same as above | | | | | | Evaluation Method and Weight (%) Examination Presentation Report Autonomy Portfolio Other Total Subtotal 0 30 40 30 0 0 100 Basic 0 10 20 10 10 0 40 | | 15th | | Presentation rev | view meeting | | Can summarize obtained research results as reports and posters, communicate them verbally to others, and discuss them. | | | | | | Evaluation Method and Weight (%) Examination Presentation Report Autonomy Portfolio Other Total Subtotal 0 30 40 30 0 0 100 Basic 0 10 30 10 0 0 100 | | 16th | | No final exam | | | | | | | | | Examination Presentation Report Autonomy Portfolio Other Total Subtotal 0 30 40 30 0 0 100 Basic 0 10 20 10 0 0 100 | Evaluati | | | | | | • | | | | | | Subtotal 0 30 40 30 0 0 100 Basic 0 10 20 10 0 0 40 | Lvaluati | | | | Poport | Autonomy | Portfolio | Othor | Total | | | | | Subtotal | | | | | | | | | | | | | | y 0 | | 10 | 20 | 10 | 0 | 0 | 40 | | | | Specialized Proficiency 0 20 20 20 0 0 0 | Specialize
Proficienc | ed
y 0 | | 20 | 20 | 20 | 0 | 0 | 60 | | | | Cross Area Proficiency 0 0 0 0 0 0 0 | | | | 0 | 0 | 0 | 0 | 0 | 0 | | | | А | kashi Co | ollege | Ye | ar | 2024 | | | Course
Title | System Control
Engineering | |---|--|--|---|---|---|--|--|--------------------------------------
---| | Course | Informa | tion | . | | 1 | | | | 3 | | Course Co | ode | 6016 | | | | Course Categor | ry | Specializ | ed / Elective | | Class Forr | mat | Lecture | | | | Credits | | Academi | c Credit: 2 | | Departme | ent | Mechani
Engineei | cal and Elec | tronic | System | Student Grade | | Adv. 1st | | | Term | | First Ser | | | | Classes per We | ek | 2 | | | Textbook
Teaching | | | | | | | | | | | Instructor | | KAMI Ya | sushi | | | | | | | | | Objectiv | | 343111 | | | | | | | | 1. Can de
2. Can de
3. Can ca
4. Can ca
5. Can ex
6. Can ex | rive the st
termine th
lculate sta
lculate obs
plain conti | rate-space in stability of the | c gains to ac
s to achieve
ance that ca | me-in
thieve
the s
an be | nvariant system us
the specified pole
pecified pole posit
achieved (adjuste
onditions of the co | e position through
ion through conv
d) using an opting | h conv
version
mal re | version to
n to a obse
gulator | a controllable canonical form
ervable canonical form | | Rubric | | | I | | | la | | | | | | | | Ideal Lev | | state chace | Standard Level | | cnaco | Unacceptable Level | | Achievem | Can derive the state-space representation for any linear time-invariant system Can derive the state-space representation for some typical system examples | | | | | | Do not know the definition of the state-space representation | | | | Achievem | ent 2 | | based or procedur | the c
e in L | e the stability
determination
yapunov's
nination method | Can explain the
procedure in Ly
stability determ | /apun | ov's | Do not know Lyapunov's stability determination method | | Achievem | ent 3 | | feedback | gains | the desired state
s by converting to
canonical form | Can explain the stabilized in stacontrol | matrate fee | rix to be
edback | Do not know the state feedback control rule | | | | | observer | calculate the desired rver gains by converting to servable canonical form Can explain the matrix to be stabilized in the observer design | | | | Do not know the observer | | | | | | performa | ance to
ved w | e control
radeoffs that can
ith an optimal | Can explain the performance the achieved with a regulator | nat car | n be | Do not know the optimal regulator | | | | | condition | s bas | e stability
ed on the
f the aggregation | Can explain the characteristics of the composition of the aggregation system's poles | | | Do not know the characteristics of the composition of the aggregation system's poles | | Assigne | d Depar | tment Ob | | , , | | | | | | | | g Metho | | | | | | | | | | Outline | | for which | n a control s
te-space rep
to design a | systen
oreser | n is designed in th
ntation that use va | e frequency don
Iriables (state va | nain. I
riable | By contrast
s) that rep | output relationships is the basis
, modern control theory is based
resent the internal state of a
the basic contents of modern | | Style | | method, | controllabil
t every clas | ity an | d observability, ar | nd how to design | state | feedback | vapunov's stability determination controllers and observers. be exercises to review the | | This course's content will amount to 90 hours of study in total. These hours include guaranteed in classes and the standard self-study time required for pre-study / reviews assignment reports. Furthermore, the course assumes that students have a basic known Laplace transform, transfer functions, and eigenvalues and matrix inversion (the ver Students who miss 1/3 or more of classes will not be eligible for a passing grade. | | | | dy / review, and completing basic knowledge of topics such as (the very basics of matrix theory. | | | | | | | Charact | eristics | of Class / | Division | in Le | earning | | | | | | ☑ Active | Learning | | □ Aideo | by IC | СТ | ☑ Applicable to | o Rem | note Class | ☐ Instructor Professionally Experienced | | Course | Plan | | | | | | | | | | | | | Theme | | | | Goals | <u> </u> | | | 1st I | | | Introduction | | | | cours
Can ι | se
understand | an outline and objectives of this
differences between the classical
nd modern control theory | | 1st Semeste Quarter 2nd An introd | | | An introduc | ntroduction to state-space representation | | | repre
Can e | sentation | xpression for state-space process for deriving a state-space | | | | 3rd | Solutions fo | or equ | ations of state | | Can e
matri | explain the | solution for an equation of state
meaning of a state-transition
state-transition matrix | | | | 4th | Relationship betw
transfer function, | een an equation
and the stability | of state and a
condition | space matrix
Can explain the | e stable condit | tion from the state-
ions of a system
e representation | | | |----------------------------|-------------------------------|------|---|---|-----------------------------|---|---|---|--|--| | | | 5th | Similarity convers | sion invariants an | d transfer | transformation
Can similarly tr | Can explain the formula for a similarity transformation Can similarly transform states using the given similarity transformation matrix | | | | | | | 6th | Concept of stabili | ty | | Can explain the convergence va | e relationship lalues of state | between stability and variables | | | | | | 7th | Lyapunov's stabil | Lyapunov's stability determination method (1) | | | apunov's stabi | lity determination | | | | | 8th Lyapund | | | ity determination | method (2) | linvariant system | m given by a s
, based on Lya | of the linear time-
state-space
apunov's stability | | | | | 9th St | | State feedback ar | nd controllability | | Can explain sta
Can determine
conditions | | ontrol rules
based on control | | | | | 10th th | | The nature of a co | | ical form and | matrix in contr
correspondence
Can calculate t | ollable canonic
e with a transf
he state feedb | cs of the system
cal form and their
fer function
lock gain that
osition through
canonical form | | | | | | | Observers and ob | servability | | | configuration observability | n of an observer | | | | | 2nd
Quarter | 12th | The nature of obs | | l form and the | matrix in obser | vable canonice
with a transfobserver gain to
oosition throuce | cs of the system
al form and the
fer function
that achieves the
gh conversion to a | | | | | | 13th | State feedback coinstruments (agg | | observation | Can explain the composition of the aggregation system's poles Can explain the stability conditions of the aggregation system | | | | | | | | | Pole-zero offset, odual system | controllability / ob | oservability, a | Can explain the relationship between pole-zero offset and the establishing controllability and observability Can explain a construction and properties of a dual system | | | | | | | 15th | | Optimal regulator | Optimal regulators, and the Kalman filter | | | Can explain the control implications for optimal regulators and the Kalman filter | | | | | Evaluati | 16th
Evaluation Method and | | Woight (0/) | | | | | | | | | <u> Lvaiuali</u> | Report | | Exercise | Mutual
Evaluations
between
students | Behavior | Portfolio | Other | Total | | | | Subtotal | | | 20 | 0 | 0 | 0 | 0 | 100 | | | | Basic
Proficiency | , 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | | | Specialized
Proficiency | d gr |) | 20 | 0 | 0 | 0 | 0 | 100 | | | | | Cross Area | | | 0 | 0 | 0 | 0 | 0 | | | | <i>F</i> | Akashi Co | ollege | Year | 2024 | | | Advanced Instrumentation
Engineering | | | | |------------------------|---------------------|--
--|--|---|--|---|--|--|--| | Course | Informa | tion | | | | | | | | | | Course C | ode | 6017 | | | Course Categor | y Specialize | ed / Elective | | | | | Class For | mat | Lecture | | | Credits | Academic | Credit: 2 | | | | | Departme | ent | Mechanica
Engineerin | l and Electronic
g | System | Student Grade | Adv. 1st | | | | | | Term | | First Seme | ester Classes per Wee | | | ek 2 | | | | | | Textbook
Teaching | and/or
Materials | 前田、木村 | 、押田:「計測工学 | 学」、コロナ社 | | | | | | | | Instructo | r | SHI Fengh | hui | | | | | | | | | Course | Objectiv | es | | | | | | | | | | (1) 計測ラ
(2) 計測シ | データの処理
システムの解 | て総合的に理解
2 (単位と標準、
3析と特性評価
2 (基本原理とも | 統計的データ処
(システム評価法 | 戦を適切に応用できる
理)
、ディジタル信号処 | ることを達成度目
理) | 標とする。 | | | | | | Rubric | | | | | | | | | | | | | | | 理想的な到達レイ | ベルの目安 | 標準的な到達レイ | ベルの目安 | 未到達レベルの目安 | | | | | 評価項目1 | L | | 計測データの処理
計的データ処理)
用できる。 | 理 (単位と標準、統
について理解し応 | 計測データの処理
計的データ処理)
る。 | 里 (単位と標準、紹
について理解でき | 記計測データの処理 (単位と標準、統計的データ処理)について理解できない。 | | | | | 評価項目2 | 2 | | | 解析と特性評価 (シ
ディジタル信号処
し応用できる。 | 計測システムの所
ステム評価法、デ
理)について理解 | 解析と特性評価 (シ
ディジタル信号処
できる | ・計測システムの解析と特性評価 (シ
ステム評価法、ディジタル信号処
理)について理解できない。 | | | | | 評価項目3 | 3 | | 各種基本計測原理 | 理 (基本原理とその
関 (基本原理とその)
関 し応用できる。 | | 理 (基本原理とそ | 各種基本計測原理 (基本原理とその応用)について理解できない。 | | | | | Assigned Department Ob | | | | :n+U/IU/II (Cる。 | ONDMIC JOIC | 生はている。 | ツバル円 ハピ ンV・し、土が干 しさんひい。 | | | | | | ng Metho | | ECUVES . | | | | | | | | | Outline | ig Metric | 最近の著し
中でのオン
1)各種応用
ついて簡単 | ライン計測やイン
計測に共通な基礎
に総括復習したの | /プロセス計測の必要

 事項 (計測工学とに | 要性がますます高
は、単位と標準、記 | まっている。本講
計測データ処理、記 | タによる計測の自動化や生産体系の
養では、
十測系の特性とシステム解析など) に | | | | | Style | | | より授業を進める。 | | | | | | | | | Notice | | 90時間に相 | 当する学習内容で | 望時間と、予習・復
である。
- (割合) 1/3以上の | | ート作成に必要な | 票準的な自己学習時間の総計が、 | | | | | Charact | teristics (| of Class / D | Division in Lea | arning | | | | | | | | □ Active | e Learning | | ☑ Aided by IC | | | | | | | | | | | | M Alded by IC | Т | ☑ Applicable to | o Remote Class | ☐ Instructor Professionally
Experienced | | | | | Course | D. | | M Alded by IC | Т | ☑ Applicable to | o Remote Class | | | | | | | Plan | | , | Т | ☑ Applicable to | | | | | | | 220.00 | Plan | + | neme | T | ☑ Applicable to | o Remote Class
Goals | | | | | | | Plan | 総
1st 計 | neme
論
測工学とは何か? | 計測、測定、計量な | ., | Goals | | | | | | | Plan | 1st 総計
と
計単
2nd つ | neme
論
測工学とは何か?
計測の目的につい
測の基礎
位と標準について
いて知識の定着を | 計測、測定、計量な | さどの工学的意味
位や次元解析に
内手法と計測シ | Goals
計測工学とは何か | Experienced | | | | | | Plan | 1st 結計
と
2nd つ
ス。
計
3rd 測 | neme
論
測工学とは何か?
計測の目的につい
測の基礎
位と標準について知識の定着を
テム計画について
測データの誤差と
定誤差と測定精度 | 計測、測定、計量な
いて考察する。
「考察し、SI 基本単
で図る。測定の基本的
「考察し、計測の目的 | どの工学的意味
位や次元解析に
対手法と計測シ
内を明確にする
関差の要因を明 | Goals
計測工学とは何か
単位と標準につい
ついて理解する。 | Experienced 、その基本概念について理解する。 | | | | | | Plan 1st Quarter | 1st 総計と
計単つス。
3rd 別測ら
4th 測測 | neme
論
測工学とは何か?
計測の基礎
位いて知計画について
がである。
ができます。
神では、
ができます。
神ででは、
ができます。
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
神ででは、
は、
は、
は、
は、
は、
は、
は、
は、
は、 | 計測、測定、計量な
ハて考察する。
で考察し、SI 基本単
で考察し、別定の基本的
で考察し、計測の目的
で
で
で
で
で
で
で
で
で
で
で
で
で | だの工学的意味
位や次元解析に
り手法と計測シ
内を明確にする
以差の要因を明
て考察する。 | Goals 計測工学とは何か 単位と標準につい ついて理解する。 測定誤差と測定精。 | Experienced 、その基本概念について理解する。 て考察し、SI 基本単位や次元解析に | | | | | 1st
Semeste
r | 1st | 1st 総計と
計単つス。
3rd 別測で
4th 計計 | neme
油
油
油
油
油
一
神
神
神
神
神
神
神
神
神
神
神
神
神 | 計測、測定、計量ないて考察する。 「考察し、SI 基本単位図る。測定の基本にである。測定の基本にできない、計測の目的でで表際し、計算を関係である。 と精度では、表別の理では、できないである。 | どの工学的意味
位や次元解析に
り手法と計測シ
内を明確にする
呉差の要因を明
て考察する。
ン、例題を通じ | Goals 計測工学とは何か 単位と標準につい ついて理解する。 測定誤差と測定精。 | Experienced | | | | | 1st
Semeste | 1st | 1st 総計と
2nd ス。
3rd 計測ら
4th 計計基
機 |
eme
論
測工学とは何か?
計測の基礎について
がった。
調性についてをでいて対している。
神ではいったではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいった。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
神ではいる。
はいる。
はいる。
はいなな。
はいなななななななな。
はいなななななななななななななななななななななななななななななななななななな | 計測、測定、計量ないて考察する。 に考察する。 に考察する。 に考察し、SI 基本単位図る。測定の基本にで考察し、計測の目的にで考察し、に対理について考察した。 対処理について考察に対して表際を対した。 に対して表際に対して表際には、 に対して表際に対して表際には、 に対して表際に対して表際には、 に対して表際に対して表際に対して表際には、 に対して表際に対して表際に対して表際に対して表際に対して表際に対して表際に対して表際に対して表際に対して表際に対して表際に対して表際に対して表際に対して表際に対して表別に対象を表別に対象を表別に対して表別に対しで表別に対して表別に対して表別に対して表別に対して表別に対しまするとまするのでは表別に対しまするのでは表別に対しまするのではまするのではなりではまするのではまするのではなりではなりまする | などの工学的意味
位や次元解析に
付手法と計測シ
内を明確にする
以差の要因を明
て考察する。
し、例題を通じ
ついて考察し、 | Goals 計測工学とは何か 単位と標準につい ついて理解する。 測定誤差と測定精。 測定データの統計 計測システムの基。 | Experienced | | | | | 1st
Semeste | 1st | 1st 総計と
計単つス。
計測の
割測で計計基機機。
その機弾 | eme
論測工学とは何に
学と目のでした。
神川別をないった。
神川別の基標準ではいった。
神川のとない。
神川のとない。
神川のとない。
神川のとない。
神川のとない。
神川のとない。
神川のとない。
神川のでででいい。
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川ののでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神川のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田のでは、
神田の | 計測、測定、計量ないて考察する。 「考察する。」 「考察する。」 「考察し、測定の基本はで、対象のでは、計測の目的でで、対象のでは、計算のでは、では、対象のでは、ないのでは、対象のでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、 | などの工学的意味
位や次元解析に
対手法と計測シ
内を明確にする
以差の要因を明
て考察する。
し、例題を通じ
ついて考察し、 | Goals 計測工学とは何か 単位と標準につい ついて理解する。 測定誤差と測定精 。 測定データの統計 計測システムの基 。 機械的拡大原理(| Experienced Experienced Experienced . その基本概念について理解する。 | | | | | 1st
Semeste | 1st | 1st 総計と計単つス。
3rd 別測で計計基機機。
6th 機弾定機 |
eme
論測計測のとは的でしている。
がつしている。
がつしている。
がつしている。
がつしている。
がつしている。
がつしている。
がっしている。
がっしている。
にででいる。
がいている。
にでいる。
がいている。
がいている。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にでいる。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
にている。
に | 計測、測定、計量ないて考察する。 「考察する。」 「考察する。」 「考察し、測定の基本はで、対象のでは、計測の目的でで、対象のでは、計算のでは、では、対象のでは、ないのでは、対象のでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、 | などの工学的意味
位や次元解析に
対き明確にする
以差の要因を明
て考察する。
し、例題を通じ
ついて考察する
系による振動測 | Goals 計測工学とは何か 単位と標準につい ついて理解する。 測定誤差と測定精 ・ 測定データの統計 計測システムの基 ・ 機械的拡大原理(・ ・ 弾性変形のセンサ 定について理解す | Experienced Experienced Experienced . その基本概念について理解する。 | | | | | 1st
Semeste | 1st | 1st 総計と計単つス。
計単つス。計削ら 測測て 計計基 機機。
機弾定 機ジ 電イ
9th | eme
論測計測のという。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神にないた。
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
神には、
・
神には、
・
神には、
・
は、
は、
は、
は、
は、
は、
は、
は、
は、
は、 | 計測、測定、計量ないて考察する。 「考察する。」 「考察する。」 「考察する。」 「考察し、測定の基本的である。」 「特度のできた。」 「特度のでは、できた。」 「対象の地理にして、できた。」 「対象の地理にして、できた。」 「対象のでは、できた。」 「は、大のでは、大のでは、大きには、大きには、大きには、大きには、大きには、大きには、大きには、大きに | などの工学的意味
位や次元解析に対する
性が大きいではいまする。
以きをの要する。
以きを変する。
し、のいて考察する。
いて考察する。
による振動則
する。
による。
による。
による。
による。 | Goals 計測工学とは何か 単位と標準につい で理解する。 測定誤差と測定精 ・ 測定データの統計 計測システムの基 ・ 機械的拡大原理(・ 弾性変いのセロ解す ジャイロ原理とそ インピーダンス変 | Experienced Experienced | | | | | | | 電気電子式センサ (3)
圧電効果、ゼーベック効果などのセン!
いて考察する。 | サへの応用につ | 圧電効果、ゼーベッ
いて理解する。 | yク効果などのセンサへの応用につ | |------------------|----------|--|---------|------------------------------|--| | | 12th | 流体式センサ
流体原理を用いた流体量の測定および3
ータの原理について考察する。 | 空気マイクロメ | 流体原理を用いた流ータの原理について | 流体量の測定および空気マイクロメ
C理解する。 | | | 13th | 光学式センサ
光干渉法、モアレ法の原理と応用につい
光学式センサの精度を通じて測定の高料
因について考察する。 | | | 法の原理と応用について考察する。
度を通じて測定の高精度化とその要
る。 | | | 14th | その他の方式
波動現象を用いたセンサについて考察 [。] | する。 | 波動現象を用いたも | センサについて理解する。 | | | 15th | まとめ
全 14 週の総括として計測システムの『
える。 | 事例について考 | 全 14 週の総括として計測システムの事例につい解する。 | | | | 16th | レポート課題 | | | | | Evaluation Metho | od and W | /eight (%) | | | | | | | 講義への理解と取り組み状況 | レポート課題 | | Total | | Subtotal | | 60 | 40 | | 100 | | 基礎的能力 | | 0 | 0 | 0 | | | 専門的能力 | | 60 | 40 | | 100 | | 分野横断的能力 | | 0 | 0 | | 0 | | | Akashi College | | Year 2024 | | | Course
Title Random Signal Analysis | | | |---------------------------------|---------------------
--|--|--|--
--|---|--| | Course | Informa | tion | | | | | | | | Course Co | ode | 6018 | | | Course Categor | y Special | zed / Elective | | | Class For | mat | Lecture | | | Credits | Acaden | nic Credit: 2 | | | Departme | ent | Mechanica
Engineerir | l and Electronic
Ig | System | Student Grade | Adv. 1s | t | | | Term | | Second Se | mester | | Classes per We | ek 2 | | | | Textbook | and/or
Materials | | | | | | | | | Instructo | | INOUE Ka | zunari | | | | | | | Course | Objectiv | es | | | | | | | | (2) Can c | :alculate qu | Jeues using p | arameters such | as average arriva | al and average se | ervice in relátic | nd probability theory
n to queuing theory.
relation to reliability analysis. | | | Rubric | | | | | | | | | | | | | Ideal Level | | Standard Level | | Unacceptable Level | | | Achievement 1 | | | Can fully explaissues and calcusing the basic | ulate probability | Can explain the and calculate the using basic rule | ne probability | Cannot explain the basics issue and calculate the probability using basic rules. | | | Achievem | nent 2 | | Can fully calcul
parameters suc
arrival and ave | | Can calculate q
parameters suc
arrival and ave | ch as average | Cannot calculate queues using parameters. | | | Achievem | nent 3 | | Fully understar
calculate the fa
expectancy, an
series-parallel
systems. | nd how to
hilure rate, life
and reliability of | Understand hor
failure rate, life
reliability of ser
redundant syst | expectancy, a ries-parallel and | nd calculate the failure rate, life | | | Assigne | ed Depar | tment Obj | ectives | | | | | | | Teachin | ng Metho | od | | | | | | | | Outline | | Handling of
to the fast
irregular d | est possible solu | d large amounts o
ution. This course | f data requires s
will be held in le | statistical think
ecture and exer | ng. Statistical analysis of data leads
cise formats while introducing | | | | | F | | | | | | | | Style | | on each it | ks 1 to 15, class
em set in the Co | ses will be held in
ourse Objectives a | lecture and exer
nd Aims. | cise formats. <i>A</i> | ssignment exercises will be based | | | Style
Notice | | on each ite
This cours
guarantee
assignmer | em set in the Co
e's content will a
d in classes and
at reports. | ourse Objectives a
amount to 90 hou
the standard self | nd Aims.
Irs of study in to
-study time requ | tal. These hou
iired for pre-st | rs include the learning time
udy / review, and completing | | | Notice | teristics (| on each ite
This cours
guarantee
assignmer
Students v | em set in the Co
e's content will a
d in classes and
at reports.
who miss 1/3 or | ourse Objectives a
amount to 90 hou
the standard self
more of classes v | nd Aims.
Irs of study in to
-study time requ | tal. These hou
iired for pre-st | rs include the learning time
udy / review, and completing | | | Notice
Charact | teristics (| on each ite
This cours
guarantee
assignmer
Students v | em set in the Co
e's content will a
d in classes and
at reports. | ourse Objectives a
amount to 90 hou
the standard self
more of classes v
arning | nd Aims.
Irs of study in to
-study time requ | tal. These hou
iired for pre-st
e for evaluation | rs include the learning time udy / review, and completing | | | Notice Charact Active | e Learning | on each ite
This cours
guarantee
assignmer
Students v | em set in the Co
e's content will
d in classes and
it reports.
who miss 1/3 or
Division in Le | ourse Objectives a
amount to 90 hou
the standard self
more of classes v
arning | nd Aims. Irs of study in to -study time requ Vill not be eligible | tal. These hou
iired for pre-st
e for evaluation | rs include the learning time cudy / review, and completing n. | | | Notice Charact Active | e Learning | on each ite This cours guarantee assignmer Students v of Class / [| em set in the Coe's content will din classes and it reports. who miss 1/3 or Division in Le | ourse Objectives a
amount to 90 hou
the standard self
more of classes v
arning | nd Aims. Irs of study in to -study time requ Vill not be eligible | tal. These hou
iired for pre-st
e for evaluation
o Remote Class | rs include the learning time cudy / review, and completing n. | | | Notice Charact Active | e Learning | on each ite This cours guarantee assignmer Students v of Class / [| em set in the Coe's content will of in classes and it reports. Who miss 1/3 or Division in Le | amount to 90 hou
the standard self
more of classes v
arning
T | nd Aims. Irs of study in to -study time requivill not be eligible Applicable to | tal. These hour irred for pre-st e for evaluation or Remote Class Goals | rs include the learning time udy / review, and completing n. Instructor Professionally Experienced e guidance, what is covered in this | | | Notice Charact Active | e Learning | on each ite This cours guarantee assignmer Students v of Class / [1st | em set in the Coe's content will of in classes and it reports. who miss 1/3 or Division in Le Aided by IC Aided by IC Aided by IC heme explain the guida burse, and evalutions and evalutions in the guida burse, and evalutions are cobability, indeprobability, explain binding evaluations. | amount to 90 hou the standard self more of classes varning T nce, what is cover lation method. tical handling of events, independer | nd Aims. Irs of study in to- study time requivill not be eligible Applicable to red in this vents and endency, and | Goals Understand the probability, understand but the probability, understand bit understand bit the probability. | rs include the learning time ady / review, and completing in. Instructor Professionally Experienced e guidance, what is covered in this valuation method. e statistical handling of events and dependence and dependency, and inding events, independence, | | | Notice Charact Active | e Learning | on each ite This cours guarantee assignmer Students v of Class / [1st | em set in the Coe's content will of in classes and it reports. who miss 1/3 or Division in Le Aided by IC | amount to 90 hou the standard self more of classes varning T nce, what is coveration method. tical handling of events, independer sayes' theorem. Ince and deviation method deviation method. | nd Aims. Irs of study in to- study time requivill not be eligible Applicable to red in this vents and endency, and ance, conditional and Z- | Goals Understand the course, and even understand the probability, understand bi conditional productional prod | rs include the learning time ady / review, and completing in. Instructor Professionally Experienced e guidance, what is covered in this valuation method. e statistical handling of events and dependence, and | | | Notice Charact Active | Plan | on each ite This cours guarantee assignmer Students v of Class / [1st | em set in the Coe's content will of in classes and it reports. who miss 1/3 or Division in Le Aided by IC | amount to 90 hou the standard self more of classes varning T nce, what is coveration method. tical handling of endence and dependence and dependence and deviation icators of
scattered aganize 2D data ar | nd Aims. ars of study in to- study time requivill not be eligible Applicable to red in this vents and endency, and and z- and z- and data. | Goals Understand the probability, understand by conditional production of the probability. Understand by conditional production as Can understand | rs include the learning time ady / review, and completing in. Instructor Professionally Experienced e guidance, what is covered in this raluation method. e statistical handling of events and dependence and dependency, and indig events, independence, abability, and Bayes' theorem. Iriance and deviation, and Z-indicators of scattered data. In the dependence of the scattered data and down to organize 2D data and | | | Notice Charact Active | Plan | on each ite This cours guarantee assignmer Students v of Class / [1st | em set in the Coe's content will of in classes and it reports. who miss 1/3 or Division in Le Aided by IC | amount to 90 hou the standard self more of classes varning T nce, what is coveration method. tical handling of elevents, independence and dependence and deviation icators of scattered ganize 2D data and correlation. | nd Aims. ars of study in to- study time requivill not be eligible Applicable to red in this vents and endency, and and z- and z- and data. | Goals Understand the probability, Understand bit conditional productional process of the conversion as Can understar about orthogo Exercise 1 | rs include the learning time ady / review, and completing in. Instructor Professionally Experienced e guidance, what is covered in this valuation method. e statistical handling of events and dependence and dependency, and inding events, independence, shability, and Bayes' theorem. riance and deviation, and Z-indicators of scattered data. In the dependence of the professional triance and deviation. | | | Notice Charact Active Course | Plan | on each ite This cours guarantee assignmer Students voor Class / E In the course of C | em set in the Coe's content will of in classes and it reports. who miss 1/3 or Division in Le Aided by IC A | more objectives a amount to 90 hou the standard self more of classes warning T mce, what is cover attion method. Itical handling of events, independence and deviation icators of scattered and self-bayes' theorem. Ince and deviation icators of scattered and correlation. | nd Aims. ars of study in to- study time requivill not be eligible. Applicable to red in this vents and endency, and and Z- and about | Goals Understand the probability. Understand bi conditional productional production | es include the learning time and / review, and completing in. Instructor Professionally Experienced e guidance, what is covered in this raluation method. e statistical handling of events and dependence and dependency, and indig events, independence, abability, and Bayes' theorem. iriance and deviation, and Z-indicators of scattered data. id how to organize 2D data and inality and correlation. class time | | | Notice Charact Active Course | Plan | on each ite This cours guarantee assignmer Students voor Class / E In the course of C | em set in the Coe's content will of in classes and it reports. who miss 1/3 or Division in Le Aided by IC | more objectives a amount to 90 hou the standard self more of classes warning T mce, what is cover attion method. Itical handling of events, independence and deviation icators of scattered and self-bayes' theorem. Ince and deviation icators of scattered and correlation. | nd Aims. ars of study in to- study time requivill not be eligible. Applicable to red in this elements and endency, and and Z- and about eving average. | Goals Understand the probability. Understand bi conditional pro Can understand bi Submit within Understand at average methological properties of the | es include the learning time ady / review, and completing in. Instructor Professionally Experienced e guidance, what is covered in this raluation method. e statistical handling of events and dependence and dependency, and inding events, independence, abability, and Bayes' theorem. riance and deviation, and Z-indicators of scattered data. d how to organize 2D data and inality and correlation. class time rout calculating using moving ods and noise reduction. gnals and noise, and S/N ratio | | | Notice
Charact | Plan | on each ite This cours guarantee assignmer Students v of Class / [Interpretation of the course and the course Interpretation of Interpretati | em set in the Coe's content will a d in classes and it reports. who miss 1/3 or Division in Le Aided by IC | amount to 90 hou the standard self more of classes varning T nce, what is cover lation method. tical handling of endence and dependence and dependence and dependence and deviation icators of scattered ganize 2D data and correlation. | nd Aims. Irs of study in to- study time requivill not be eligible Applicable to red in this vents and endency, and and Z- and about ving average ratio decibel | Goals Understand the probability. Understand bi conditional pro conversion as Can understand about orthogo Exercise 1 Submit within Understand ab average methodological colcular understand sidecibel calcular Understand Ty | es include the learning time ady / review, and completing in. Instructor Professionally Experienced e guidance, what is covered in this raluation method. e statistical handling of events and dependence and dependency, and inding events, independence, abability, and Bayes' theorem. riance and deviation, and Z-indicators of scattered data. d how to organize 2D data and inality and correlation. class time rout calculating using moving ods and noise reduction. gnals and noise, and S/N ratio | | | Notice Charact Active Course | Plan | on each ite This cours guarantee assignmer Students voor Class / [1st E: 2nd E: 2nd Pi 3rd Ucc 4th Oi 5th E: 6th E: 7th E: 8th E: 0th E: | em set in the Coe's content will of in classes and it reports. who miss 1/3 or Division in Le Aided by IC | nce, what is cover attion method. tical handling of events, independer and deviation icators of scattered are correlation. ss time culating using mose reduction. and noise, and S/N and Type 2 errors, and amount of the country | nd Aims. Irs of study in to- study time requivill not be eligible Applicable to red in this vents and endency, and and Z- and about ving average ratio decibel | Goals Understand the conversion as Can understand vaconversion as Can understand about orthogo Exercise 1 Submit within Understand at average methodosibility. Understand sidecibel calcular understand at average methodosibel calcular understand sidecibel calcular understand Tytesting. | e guidance, what is covered in this raluation method. e statistical handling of events and dependence, and dependency, and making events, independency, and making events, independence, abability, and Bayes' theorem. riance and deviation, and Z-indicators of scattered data. d how to organize 2D data and nality and correlation. class time rout calculating using moving ods and noise reduction. gnals and noise, and S/N ratio tions. rpe 1 and Type 2 errors, and | | | Notice Charact Active Course | Plan | on each ite This cours guarantee assignmer Students v of Class / [The cours | em set in the Coe's content will of in classes and it reports. who miss 1/3 or Division in Le Aided by IC A | nce, what is cover attion method. tical handling of events, independer and deviation icators of scattered are correlation. ss time culating using mose reduction. and Type 2 errors, and Type 2 errors, and Type 2 errors, and to corve, failure reductive, and to corve, failure reductive, and the corve, failure reductive, and the corve, failure reductive, | nd Aims. Irs of study in to- study time requivill not be eligible The Applicable to the standard and and about Ired in this | Goals Understand the conversion as Can understand by Conversion as Can understand about orthogo Exercise 1 Submit within Understand at average methodos Understand at average methodos Understand at average methodos Understand Siecibel Calculations. Exercise 2 Submit within Understand the period of time Und | es include the learning time and / review, and completing in. Instructor Professionally Experienced e guidance, what is covered in this raluation method. e statistical handling of events and dependence and dependency, and inding events, independence, abability, and Bayes' theorem. riance and deviation, and Z-indicators of scattered data. id how to organize 2D data and inality and correlation. class time rout calculating using moving ods and noise reduction. gnals and noise, and S/N ratio tions. ripe 1 and Type 2 errors, and class time e bathtub curve, failure rate for a and life expectancy. e calculation of the average int and reliability from the initial | | | | 12th | Exercise 3
Submit within clas | ss time | Exercise 3
Submit within class time | | | | | |----------------------------|--------------|--|--------------------|--|---|-------------|-------|--| | | 13th | Program developm
notebook
Explain data analy
DataFrame creation | | 3 17 | Program development environment using Jupyter notebook Understand program data analysis using pandas, and DataFrame creation and editing. | | | | | | 14th | Explain visualization graph creation. | on with Matplotlib | Understand visual various graph cre | | plotlib and | | | | | 15th | Exercise 4 Submit within clas | ss time | | Exercise 4
Submit within cla | ss time | | | | | 16th | No final exam | | | No final exam | | | | | Evaluation M | 1ethod and 1 | Weight (%) | | | | | | | | | Exercise | | | | | | Total | | | Subtotal | 100 | 0 | 0 | 0 | 0 0 100 | | 100 | | | Basic
Proficiency | 0 | 0 | 0 | 0 | 0 | 0 | | |
 Specialized
Proficiency | | | | | 0 0 100 | | | | | Cross Area
Proficiency | 0 | О | 0 | 0 | 0 0 0 | | | | | А | kashi Co | ollege | Year | 2024 | | | urse | Advanced
Electromagnetics | | | |---|---|--|---|--|--|--|---|--|--|--| | Course | Informa | tion | | | | | | | | | | Course Co | ode | 6019 | | | Course Catego | ry S | Specializ | ed / Elective | | | | Class For | mat | Lecture | | | Credits Academic | | Academi | Credit: 2 | | | | Departme | ent | Mechanie
Engineer | cal and Electroni
ring | c System | Student Grade Adv. 1st | | Adv. 1st | | | | | Term | | | Semester | | Classes per We | eek 2 | 2 | | | | | Textbook | | | | | | | | | | | | Teaching
Instructor | | | | | | | | | | | | | Objectiv |
/es | | | | | | | | | | Evaluation
Evaluation
fields duri
Evaluation
Evaluation | n item (1)
n item (2)
ing polariz
n item (3) | Can formul
Understand
ation.
Can formul | late laws and pro | | and magnetic fie | ld pheno | mena a | applied problems.
antitative evaluation of electric
nd solve applied problems. | | | | Rubric | | | I | | la | | | T., | | | | | | | Ideal Level | . lawa and | Standard Level | | J | Unacceptable Level | | | | Achievement 1 | | | | laws and
lectrostatic field
nd solve applied | Can formulate problems of ele phenomena an problems. | ectrostat | | Cannot formulate laws and problems of electrostatic field phenomena and solve problems. | | | | Achievement 2 | | | Understand the dielectrics and problems relaquantitative electric fields polarization. | d can solve applied
ted to the
valuation of | Understand the
dielectrics and
problems relat-
quantitative ev
electric fields d
polarization. | can solv
ed to the
aluation | re
e | Do not understand the nature of dielectric materials and cannot solve problems related to the quantitative evaluation of electric fields during polarization. | | | | Achievement 3 | | | Can formulate
problems of c
magnetic field
solve applied | urrent and
I phenomena and | Can formulate
problems of cu
magnetic field
solve problems | irrent an | d | Cannot formulate laws and problems of current and magnetic field phenomena and solve problems. | | | | | | | Can derive Ma | axwell's
tic equations and | Can derive Maxwell's electromagnetic equations and solve problems. | | | Cannot derive Maxwell's | | | | Assigne | d Depar | tment Ob | jectives | | | | | | | | | Teachin | g Metho | od | | | | | | | | | | Outline | | Departm
provide (
related
for the A
electrom | nent and aims to
university-level le
to peripheral bas
advance Courses
agnetics at a un | se is based on Electromagnetics I and II taught in
ent and aims to further enhance and develop the
niversity-level lessons, however some parts were
o peripheral basic academic ability, etc.), or simp
dvance Courses, it is desirable to maintain the aca
agnetics at a university level both in name and re
e supplementing the content of Electromagnetics | | | | nagnetics I and II also largely
ue to academic constraints
their stricter handling. However
basic subjects like | | | | Style | | mark is | a score of 60 or | lation will be based 80% on periodic exam scores and 20% on presentation performance. The score of 60 or more in total for these. Handouts will have content on electromagnetic theory on, and specific computational problems. | | | | | | | | Notice | | guarante
assignme
at our so | eed in classes an
ent reports. It is
chool's Electrical | d the standard self | -study time requitudents have straightering beparting Departing Departing beparting because in the control of t | uired for
udied Ele
ment pri | pre-stu
ectroma
or to tal | s include the learning time
dy / review, and completing
gnetics I and II (in years 3 and 4)
king this course.
grade. | | | | Charact | eristics | of Class / | Division in Lo | earning | | | | | | | | ☑ Active | Learning | | ☐ Aided by I | СТ | ☑ Applicable t | o Remot | e Class | ☐ Instructor Professionally Experienced | | | | | | | 1 | | 1 | | | 1 = Apolitorio da | | | | Course | Plan | | | | | | | | | | | | | | Theme | | | Goals | | | | | | | | 1st | and electric pow
phenomena. De
potential of an e
electric field as a | ds in a vacuum e virtual concepts er lines as fields of fine the electric por lectric field, and co
an electric potentia | f electrical
tential as
onsider the
I gradient. Use | electrical and electric
ential as phenomena.
nsider the potential of a
gradient. Use electric field | | e virtual concepts of electric fields
wer lines as fields of electrical
an define the electric potential as
electric field, and consider the
an electric potential gradient. | | | | 2nd
Semeste
r | 3rd
Quarter | 2nd | be used when ca
of its meaning in | theorem, which is
alculating electric find physics and applications. | elds, in terms
cation to | likely to | be use
of its me | auss's theorem", which is most
d when calculating electric fields, in
aning in physics and application to
d solve example problems. | | | | | | 3rd | Examine the div
and vectors in b
terms by introdu
explain example
equations, which | place's and Poisson's equations amine the divergence of electric power lines d vectors in both physical and mathematical ms by introducing divergence (div). Also, plain example uses for Laplace's and Poisson's uations, which are the most versatile and well- own equations for describing electrostatic | | | Can examine the divergence of electric polines and vectors in both physical and mathematical terms by introducing diverg (div). Also understand how to use Laplace Poisson's equations, which are the most vand well-known equations for describing electrostatic fields. | | | | | | 4th | Capacitance Outline the potential and capacity factors, and the energy of conductive systems, in regards to a charged conducting system. Learn more about the two most popular conducting systems, namely capacitance, including examples of actual calculations. | Understand the potential and capacity factors, and the energy of conductive systems, in regards to a charged conducting system. Understand the two most popular conducting systems, namely capacitance, including examples of actual calculations. | |----------------|------
--|--| | | 5th | Dielectric materials (polarization) In many cases, capacitors have insulators (dielectrics) rather than vacuums (air). Learn about various materials' dielectric properties by introducing the concept of flux density in order to understand the physical phenomena of dielectric materials in electric fields. | In many cases, capacitors have insulators (dielectrics) rather than vacuums (air). Can explain various materials' dielectric properties by introducing the concept of flux density in order to understand the physical phenomena of dielectric materials in electric fields. | | | 6th | Electric fields in dielectric materials Solve example problems and explain the handling of electric fields in dielectric materials, in particular, the interface conditions for dielectric devices, electric power line refraction, the energy density of electric fields, and the forces acting on dielectric materials (the virtual displacement method). | Can solve example problems and explain the handling of electric fields in dielectric materials, in particular, the interface conditions for dielectric devices, electric power line refraction, the energy density of electric fields, and the forces acting on dielectric materials (the virtual displacement method). | | | 7th | Electric field imaging When finding electric fields in vacuums and dielectrics, while it is generally necessary to solve Laplace's and Poisson's equations, in some special boundary conditions, one can use a sophisticated and simple "imaging" method that has been known for many years. Explain this "imaging" method. | When finding electric fields in vacuums and dielectrics, while it is generally necessary to solve Laplace's and Poisson's equations, in some special boundary conditions, one can use a sophisticated and simple "imaging" method that has been known for many years. Can explain this "imaging" method. | | | 8th | Current fields and electrostatic fields When a current is distributed through a continuous conductor there are times when problems may be easily solved by using similarities with the electrostatic field. Also, electromagnetically express Kirchhoff's Law, which often appears in circuits. | When a current is distributed through a continuous conductor there are times when problems may be easily solved by using similarities with the electrostatic field. Also, electromagnetically express Kirchhoff's Law, which often appears in circuits. | | | 9th | Magnetic field Explain in detail the process that starts with the Biot–Savart law and derives Ampère's circuital integral law, from the fundamental point of view that currents are the sources of magnetic fields. | Can explain the process that starts with the Biot–Savart law and derives Ampère's circuital integral law, from the fundamental point of view that currents are the sources of magnetic fields. | | | 10th | Calculation of magnetic field distribution In describing a magnetic field that has a different starting point from that of an electric field, it becomes necessary to have a mathematical expression that differs from that of an electric field. In magnetic fields, the vector rotation (rot) is important. Explain vector potential, forces acting on electric currents, etc. | In describing a magnetic field that has a different starting point from that of an electric field, it becomes necessary to have a mathematical expression that differs from that of an electric field. Can explain vector rotation (rot) in magnetic fields, vector potential, forces acting on electric currents, etc. | | | 11th | Magnetic substances Most actual electric equipment that utilize magnetic fields use magnetic substances (ferromagnetic substances). Explain magnetic substances that are difficult to handle theoretically, including the correspondence between magnetic and electrostatic fields (BD- and HE-compatible), magnetic circuits, and the energy density of magnetic fields. | Most actual electric equipment that utilize magnetic fields use magnetic substances (ferromagnetic substances). Can explain magnetic substances that are difficult to handle theoretically, including the correspondence between magnetic and electrostatic fields (BD-and HE-compatible), magnetic circuits, and the energy density of magnetic fields. | | 4th
Quarter | 12th | Electromagnetic induction phenomenon Electromagnetic induction phenomenon is the principle for many kinds of equipment such as generators. However, electromotive force is generated by both the temporal variation of the magnetic flux itself and the relative motion of the conductor to it. Treat this phenomenon mathematically and derive Maxwell's electromagnetic equations. | Electromagnetic induction phenomenon is the principle of many kinds of equipment such as generators. However, electromotive force is generated by both the temporal variation of the magnetic flux itself and the relative motion of the conductor to it. Can treat this phenomenon mathematically and derive Maxwell's electromagnetic equations. | | | 13th | Inductance Inductance often appears as a representative element in electrical circuits. Learn about self- inductance and mutual inductance from the perspective of magnetic field energy, and explain the wave propagation speed of the reciprocating line as a calculation example. | Inductance often appears as a representative element in electrical circuits. Learn about self-inductance and mutual inductance from the perspective of magnetic field energy, and can calculate the wave propagation speed of the reciprocating line using calculation examples. | | | 14th | Maxwell's electromagnetic equations Explain Maxwell's electromagnetic equations in detail, which have critical meaning for those who learn electrical and electronic engineering as well as physics. In addition to deriving equations, do reverse derivations for the basic laws of electric field magnetic fields that have been studied. | Can explain Maxwell's electromagnetic equations in detail, which have critical meaning for those who learn electrical and electronic engineering as well as physics. In addition to deriving equations, can do reverse derivations for the basic laws of electric field magnetic fields that have been studied. | | | 15th | Solutions for Maxwell's electromagnetic equations and electromagnetic waves Solve Maxwell's electromagnetic equations as simultaneous differential equations and calculate electromagnetic waves' presence and velocity as a result of doing this. Also explain the basic characteristics of electromagnetic waves. | Can solve Maxwell's electromagnetic equations as simultaneous differential equations and calculate electromagnetic waves' presence and velocity as a result of doing this. Can also explain the basic characteristics of electromagnetic waves. | | | 16th | Final exam | | | | | | | | | |----------------------------------|-------------|--------------|--|----------|-----------|-------|-------|--|--|--| | Evaluation Method and Weight (%) | | | | | | | | | | | | | Examination | Presentation | Mutual
Evaluations
between
students | Behavior | Portfolio | Other | Total | | | | | Subtotal | 80 | 20 | 0 | 0 | 0 | 0 | 100 | | | | | Basic
Proficiency | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Specialized
Proficiency | 80 | 20 | 0 | 0 | 0 | 0 | 100 | | | | | Cross Area
Proficiency | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | А | Akashi College | | | Year | 2024 | | (| Course
Title | Advanced Strength of Materials | | | |---|---
--|---------------------------------|--|--|---|-------------------------------------|--|--|--|--| | Course | Informat | tion | | | | | | | | | | | Course Co | | 6020 | | | | Course Categor | γ | | ed / Elective | | | | Class Forr | nat | Lecture | 201 20 | nd Flootropic | Custom | Credits | | Academi | Credit: 2 | | | | Departme | nt | Engineer | | nd Electronic | System | Student Grade Adv. 1st | | | | | | | Term | | Second S | Semester Classes per Week 2 | | | | | | | | | | Textbook
Teaching | Matérials | | | | | | | | | | | | Instructor | | MORISH1 | ITA T | omohiro | | | | | | | | | 1) System them to b 2) Unders dimensior 3) Unders various pr 4) Unders intensity of | asic problet and the ball problem tand the aroblems of tand the national tand the malculations. | nderstand thems. Pasic issues P | relat
sues
f mat
beha | red to flat plat
related to str
terials.
viors related | te bending proble | ms, and can cor
lastic moduli, ar | mpare | and exam | ial stress state and can apply ine one-dimensional and two- to three-dimensionally examine alyze them, and can apply them to | | | | Rubric | • | | | | | | | | | | | | | | | Ide | eal Level | | Standard Level | | | Unacceptable Level | | | | | 1) Fundamental equations for
nulti-axial stress | | | ndamental éd | ss and can apply | Can apply various multiaxial stres problems. | | | Cannot apply various formulae for multiaxial stress to basic problems. | | | | (2) Bendii | (2) Bending of plate | | | lated to flat p
oblems and c | an explain the | Can calculate s
deflection of ba
using formula r
plate bending p | isic pr
elated | oblems by | Cannot calculate stress and deflection of basic problems related to flat plate bending. | | | | (3) Stress | (3) Stress and strain | | | nderstand the advanced issues | | | e adva | inced issue | Do not understand the advanced issues related to stress, strain, and elastic moduli and remain limited to only a one-dimensional understanding. | | | | (4) Elasto | plastic pro | blem | be
ela
ho
ap | nderstand the
haviors relate
astoplasticity
by to analyze
ply them to indiculations. | Understand the
behaviors relat
elastoplasticity
how to analyze | ed to
of ma | the
aterials and | Do not understand the mechanical phenomena related to elastoplasticity of materials. | | | | | (5) Logica
interactive | Il thinking
e commun | and
ication | str | in discuss var
rength of mat
hers based or | Can explain bas
formulae to oth
problems of str
materials. | ners o | n various | Cannot explain to others the formation of various formulae and examples of their use on various problems of strength of materials. | | | | | Assigne | d Depart | ment Ob | ject | ives | | | | | materials | | | | Teachin | g Metho | d | | | | | | | | | | | Outline | | on the ye | ear 3' | 's Strength of | lculate and evalua
ously learn relate
f Materials I, year
dvanced issues. | ate the strength
d matters, think
4's Strength of | of str
logic
Mater | ructural and
ally, and ha
rials II, and | d mechanical components,
ave technical discussions. Based
I year 5's Strength of Materials III, | | | | Style | | | | | lecture style with | | | | | | | | Notice | | This cour
guarante
assignme
Students | rse's
ed in
ent re
who | content will a
classes and
eports. Stude
miss 1/3 or | amount to 90 hou
the standard stud
nts should try to t
more of classes w | rs of study in to
ly time required
think and under
vill not be eligible | tal. The
for prestand
e for e | nese hours
re-study /
for themse
evaluation. | include the learning time
review, and completing
elves. | | | | Charact | eristics o | | | ision in Lea | | | | | | | | | □ Active | | , | | Aided by IC | | ☑ Applicable to | o Rem | note Class | ☐ Instructor Professionally Experienced | | | | Course | Dlan | | | | | | | | | | | | Course | iuii | - | Them | ne | | | Goals | <u> </u> | | | | | | | | | ew of multiax | ial stress (1) | | Can s | show a sim | ple application example of stress-
icement-strain relations in the | | | | 2nd
Semeste
r | 3rd
Quarter | 2nd | Revie | ew of multiax | ial stress (2) | multiaxial stress state. Can use equilibrium equations in a rectan coordinate system. Can derive Navier–Store equations. Can use the basic formula in cand spherical coordinate systems. Can travarious formulae from a rectangular coordinate. system to polar coordinate. | | | ium equations in a rectangular
em. Can derive Navier–Stokes
use the basic formula in cylindrical
ordinate systems. Can transform
e from a rectangular coordinate | | | | | | 3rd | Flat p | olate bending | (1): Beams and | flat plates | | arities and | rmulas for beam. Can explain the extensibility of beams and flat | | | | | | 4th | Flat plate bending (2): Basic formurectangular plates | la for | bending rectangu | andling of unknown functions in
lar plates and can explain the
the basic formula. | | |------------|-------------|-----------|--|--|---|---|--| | | | 5th | Flat plate bending (3): Stress and or rectangular plates | deflection of | Can apply the basic formula for rectangular plates to basic problems, and calculate stress and deflection. | | | | | | 6th | Flat plate bending (4): Axisymmetr circular plates | ic bending of | that is expressed | sic formula for a circular plate in polar coordinates to a basic culate stress and deflection. | | | | | 7th | Review of plane stress and plane st | rain | formulae for stream and principal and also explain the conformulae for strain | oordinate transformation
sses in the plane stress states
maximum shear stresses. Can
coordinate transformation
ins in plane strain states and
kimum shear strains. | | | | | 8th | Stress and strain (1): Direction cos coordinate transformations | ines and | Can use direction coordinate transf | cosines to describe stress ormations. | | | | | 9th | Stress and strain (2): Stress | | maximum shear | alculation of principal and
stresses in a three-dimensional
explain stress invariants. | | | | | 10th | Stress and strain (3): Coordinate to for strain and yield criterion. | Can explain the coordinate transformation formula for strain in three-dimensional deformation. Can calculate strain ener three-dimensional stress state, and application intensity design. | | in three-dimensional calculate strain energy in a | | | | | 11th | Stress and strain (4): Stress-strain | equation | Understand gene can explain the e elastic
bodies. | ralized stress-strain relations and
lastic modulus for anisotropic | | | | 4th | 12th | Stress and strain (5): Index notation | tion Can express t | | formulas using index notation. | | | | Quarter | 13th | Elastoplastic problems (1): Materia torsion and bending of elastic-perfebodies | l models and
ectly plastic | Can explain the relationship between load and deformation in the torsion and bending of elastic perfectly plastic bodies. | | | | | | 14th | Elastoplastic problems (2): Limit lo residual stress caused by plastic de | ads and the limit loads in beams, a | | mit loads in combination rods,
beams, and plastic joints. Can
tress caused by plastic | | | | | 15th | Elastoplastic problems (3): Spheric and axisymmetric problems | al symmetry | Can explain the yield start condition and residual stress of elastic-perfectly plastic spherical shells, cylinders, and rotating circular plates. | | | | | | 16th | Final exam | | | | | | Evaluati | on Meth | nod and ' | Weight (%) | | | | | | | - | | Examination | Exercise | | Total | | | Subtotal | | | 80 | 20 | | 100 | | | Basic Prof | iciency | | 0 | 0 | | 0 | | | Specialize | d Proficier | ncy | 80 | 15 | | 95 | | | Cross Are | a Proficier | ncy | 0 | 5 | | 5 | | | | | | | | | | | | А | Akashi College | | Year | 2024 | | Course
Title | Production Sys | stems | | |---------------------------|--------------------|--------------|------------------------|--|-----------------|-----------------|-----------------|-------|--| | Course | Inform | ation | | | | | | | | | Course Co | ode | 6021 | | | Course Category | Specializa | ed / Elective | | | | Class Forr | mat | Lecture | | | Credits | Academi | Credit: 2 | | | | Departme | ent | Engineerir | | System | Student Grade | Adv. 1st | | | | | Term | | First Seme | ester | | Classes per Wee | k 2 | | | | | Textbook
Teaching | and/or
Material | | | | | | | | | | Instructor | - | OHMORI S | Shigetoshi | | | | | | | | Course | <u>Object</u> | ives | | | | | | | | | Rubric | | | | | _ | | | | | | | | | Ideal Level | | Standard Level | | Unacceptable Le | evel | | | Achievem | ent 1 | | | | | | | | | | Achievem | | | | | | | | | | | Achievem | | | | | | | | | | | | | ırtment Obj | ectives | | | | | | | | Teachin | g Meth | od | | | | | | | | | Outline | | | | | | | | | | | Style | | | | | | | | | | | Notice | | | | | | | | | | | Charact | eristics | of Class / I | <u>Pivision in Lea</u> | arning | | | _ | | | | □ Active | Learnin | 9 | ☐ Aided by IC | Aided by ICT Applicable to | | | o Remote Class | | | | Course | Plan | | | | | | | | | | Course | l | Т | heme | | | Goals | | | | | | | 1st | | | | | | | | | | | 2nd | | | | | | | | | | | 3rd | | | | | | | | | | 1st | 4th | | | | | | | | | | Quarter | 5th | | | | | | | | | | | 6th | | | | | | | | | | | 7th | | | | | | | | | 1st
Semeste | | 8th | | | | | | | | | r | | 9th | | | | | | | | | | | 10th | | | | | | | | | | | 11th | | | | | | | | | | 2nd | 12th | | | | | | | | | | Quarter | 13011 | | | | | | | | | | | 14th | | | | | | | | | | | 15th | | | | | | | | | E | Mad | 16th | -: | | | | | | | | Evaluati | ion Mei | thod and W | eignt (%) | T | <u> </u> | | | | | | | E | xamination | Presentation | Mutual
Evaluations
between
students | Behavior | Portfolio | Other | Total | | | Subtotal | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | | Basic
Proficienc | | | 0 | 0 | 0 | 0 | 0 | 0 | | | Specialize
Proficience | d
y | | 0 | 0 | 0 | 0 | 0 | 0 | | | Cross Are
Proficience | | | 0 | 0 | 0 | 0 | 0 | 0 | | | Д | kashi Co | ollege | \ | /ear | 2024 | | | | Course
Title | Energy Technology I | | |--|---|--|--|--|---|---|---|--|---|--|--| | Course | Informa | tion | | | | | | | 1100 | 1 | | | Course Co | | 6022 | | | | | Course Catego | ry | Specializ | red / Elective | | | Class For | mat | Lecture | | | | | Credits | | Academi | c Credit: 2 | | | Departme | ent | Mechani
Enginee | cal and E | lectronic | c System | | Student Grade | e Adv. 1st | | | | | Term | | | Semester | | | | Classes per We | Veek 2 | | | | | Textbook
Teaching | | | | | | | | | | | | | Instructor | | | | | | | | | | | | | The goal
(1) Under
(2) Under
(3) Under
(4) Set a | stand the stand the stand the problem a | | tion of he
ion metho
ethod
n simulation | at fluid
od of bas
ons on o | analysis.
sic equat
one's owi | ions. | | analys | sis of heat | fluids in energy engineering. | | | Rubric | | | | | | | | | | | | | | | | Ideal L | | | | Standard Level | | | Unacceptable Level | | | Achievem | ent 1 | | the ba | | and and o
ations for | an derive
heat | Understand the for heat fluid a | e basic
nalysis | equations. | Do not understand the basic equations for heat fluid analysis. | | | Achievem | ent 2 | | metho | d of bas | ne discret
sic equat
em on its | ions and | Understand the method of basi | | | Do not understand the discretization method of basic equations. | | | Achievem | ent 3 | | | | ne HSMA0
ram it on | C method
one's | Understand the method. | e HSM. | AC | Do not understand the HSMAC method. | | | | | simula | | blem, pei
ind analy | | Can set a prob
simple simulati
own. | | | Cannot set a problem and perform simple simulations on one's own. | | | | | | | to one | Can clearly present the answers to one's own problem in English in an easy-to-understand presentation. | | | Can present the answers to one's own problem in a presentation. | | | Cannot present the answers one's own problem in a presentation. | | | Assigne | d Depar | tment Ol | ojective | | | | | | | | | | Teachin | g Metho | d | | | | | | | | | | | Outline | | energy t
major et
fluid are
course, | through g
ffect on p
widely co
students | enerato
erforma
onducte
will lear | rs. In ad
ince in fu
d with th
n about t | dition, how
lel cells, et
le aim of re
the HSMAC | v the movemen
c. In developing
educing develop | t of wa
energoment | ater and e
gy equipm
costs and | , etc. and converted to electrical lectrolytes is controlled has a ent, numerical analyses of heat obtaining detailed data. In this nethods to numerically analyze | | | Style | | The first | half of th | ne class | is made | up of lecti | | | | d half, students will conduct | | | Notice | | guarante
assignm
thermod
students
conducte | eed in cla
lent repor
lynamics,
s need to
ed in Engl | sses and
ts. Whil
thoroughave a
lish. | d the sta
le it is de
gh reviev
minimun | ndard self-
sirable for
ving of the
n knowledg | -study time requestudents to have lessons will help | uired for
e a ba
p stud
e. In a | or pre-stu
ssic knowle
lents unde
ddition, th | s include the learning time
dy / review, and completing
edge of fluid dynamics and
erstand the content. Furthermore,
ais course will fundamentally be | | | Charact | eristics o | of Class / | ['] Divisio | n in Le | earning | | | | | | | | ☐ Active | Learning | | □ Aid | ed by I | СТ | | ☐ Applicable t | o Rem | note Class | ☐ Instructor Professionally
Experienced | | | Course | Dlan | | | | | | | | | | | | Course | riali | | Theme | | | | | Goals | | | | | | | 1ct | | intions f | for book | fluid aire | ation (1) | Unde | rstand the | equations of the fluid continuum | | | | | 1st | basic equ | uations 1 | ior neat 1 | fluid simul | au011 (1) | and t | he derivat | ion of equations of motion. | | | | | 2nd | Basic equ | uations 1 | for heat t | fluid simul | ation (2) | motic | n and equ | derivation of fluid equations of lations of energy. | | | 2nd
Semeste | 3rd
Quarter | 3rd | Basic equ | uations (| for heat t | fluid simul | ation (3) | meth | od of the I
ment of bu | e energy equation of fluid to one sed fluid. Also, understand the Boussinesq approximation as a soyancy terms. | | | 1 | | 4th | About no | ndimen | sionalizir | ng basic ed | quations | nondi
make | mensiona
it dimens | | | | | | 5th | Discretiza | ation me | ethod of | basic equa | ations (1) | Understand how to discretize differentia | | are basic equations. Also, solution's accuracy and the | | | | | 6th | Discretization me | thod of basic equ | uations (2) | equations that | | | | |--------------------------|----------------|------------|--------------------|-------------------|-------------|---|---|---|--| | | | 7th | MAC method, and | I SMAC method | | Can derive Po
understand th
are two of the
fluid. | isson's equatio
e MAC and SM
explicit metho | n on pressure, and
AC methods, which
ods for incompressible | | | | | 8th | HSMAC method | | | | | nod to solve the
ire using Newton's | | | | | 9th | Explanation of ass | signment 1 | | | e of a flow in a | using free software cavity containing | | | | | | Exercise | | | Can calculate the analysis re | | fer coefficient from | | | | | | Exercise | | | | ne relationship
d analysis accı | between
mesh
ıracy. | | | | 4th
Quarter | 12th | Explanation of ass | signment 2 | | Can review the engineering problems on one's own, and can discuss the problems proposed with teachers and set an appropriate problem. | | | | | | | 13th | Exercise | | | Can program and run simulations for the problem on one's own. | | | | | | | 14th | Exercise | | | Can program and run simulations for the problem on one's own. | | | | | | | 15th | Presentation | | | Can present simulation results for the problem in English. | | | | | | | 16th | No final exam | | | | | | | | Evaluati | ion Met | hod and | Weight (%) | | | | | | | | | | kamination | | Assignments | Behavior | Portfolio | Other | Total | | | Subtotal | 0 | | 30 | 70 | 0 | 0 | 0 | 100 | | | Basic
Proficienc | y 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | | Specialize
Proficienc | | | 30 | 70 | 0 | 0 | 0 | 100 | | | Cross Are
Proficienc | | | 0 | 0 | 0 | 0 | 0 | 0 | | | А | kashi Co | llege | | Year | 2024 | | | Course
Title | Tribology | | |---|------------------------------|--|---|---|--|---|--|---|--|--| | Course 1 | Informat | ion | | | - | | 1 | | | | | Course Co | | 6023 | | | | Course Categor | ry | Specialize | ed / Elective | | | Class Forr | nat | Lecture | | | | Credits | | Academi | Credit: 2 | | | Departme | ent | Mechanic
Engineeri | | nd Electronic | System | Student Grade | | Adv. 1st | | | | Term | | Second S | eme | ester | | Classes per We | eek | 2 | | | | Textbook
Teaching | | | | | | | | | | | | Instructor | | KATOH T | akal | niro | | | | | | | | (1) Can do
method fo
(2) Can es
(3) Can es | or evaluatir
stablish eff | erstanding
ng them in
ective use | an a
of fri | ppropriate me
ction and me | riction and wear planner.
ethods to control for methods for design | riction and wear | such | as lubricat | motion surfaces, and establish a ion.
nt. | | | Rubric | | | | | | 1 | | | | | | | | | | eal Level | | Standard Level | | | Unacceptable Level | | | Achievem | ent 1 | | th
ph
re
es
ev | e complex fr
nenomena th | n surfaces, and
thod for
m in an | Can deepen un
the complex fri
phenomena that
relative motion
understand how
them in an app | iction
at occ
surfa
w to e | and wear
ur on
ces and
valuate | Cannot deepen understanding of the complex friction and wear phenomena that occur on relative motion surfaces and do not understand how to evaluate them in an appropriate manner. | | | Achievem | ent 2 | | ction and frid | effective use of ction wear as lubrication. | Understand the friction and me friction and we lubrication. | ethods | to control | Do not understand the effective use of friction and methods to control friction and wear such as lubrication. | | | | Achievement 3 | | | | nd specific m | various guidelines
ethods for
ional parts of | Understand the various guidelines and specific methods for designing frictional parts of equipment. | | | Do not understand the various guidelines and specific methods for designing frictional parts of equipment. | | | Assigne | d Depart | ment Ob | ject | ives | | | | | | | |
Teachin | g Metho | d | | | | | | | | | | Outline | | wear phe | nom
ate n
ubric | nena that occ
nanner, and
cation. Stude | cur on relative mot
also explain the et | tion surfaces—ar
fective use of fri | nd to | explain how
and metho | ns—i.e., the complex friction and
w to evaluate them in an
ds to control friction and wear
fic methods for designing frictional | | | Style | | Classes v
The contrunderstal
The repo
1) An exe
take into
tribology
survey or
soft thin
This cour
Materials | will for ents and in the control of | ocus on a leco of the repor g. signments a e about the count interfaculication technid lubricants rs. 9) An exest based on a leco of the count interfaculication technid lubricants rs. 9) An exest based on a leco of the county | t will be instructed re as follows: contact condition be shear strength. Including the distribution of the shear strength. Including the shear strength of the shear sh | petween two obj
3) A survey and
erivation of the on
exercise on be
int of wear. 10) | jects.
sumn
double
earing
Litera
know | gress of the 2) An exer nary of var e integral per design me ture resear | , and group work as appropriate. e class and the students' levels of cise for friction coefficients which ious types of wear. 4) A study on art of the Reynolds equation. 6) A sthods. 8) A study on hard and rch on tribology e following subjects: Strength of , and Engineering Design II | | | Notice | | Before ta
questions
include th
review, a
Students | king
dur
ne le
nd c
who | the course, ring the cour tarning time completing as miss 1/3 or | se. This course's og
guaranteed in class
ssignment reports | content will amous
ses and the star | unt to
ndard | 90 hours of self-study | , and be prepared to ask of study in total. These hours time required for pre-study / s presentation, or fail to submit a | | | Charact | eristics c | f Class / | Div | ision in Le | earning | | | | | | | □ Active | Learning | | | Aided by IC |
CT | ☑ Applicable to | o Rem | note Class | ☐ Instructor Professionally
Experienced | | | | | | | | | | | | | | | Course | Plan | - | | | | | | | | | | | 1 | | Then | | _ | | Goals | 5 | | | | | | | Expla | | ?
e of tribology, lubr
prication by oil. | ication | Learr
and a | n an outline
about lubric | e of tribology, lubrication methods, cation by oil. | | | 2nd
Semeste
r 3rd
Quarter | 2nd | Solid
Expla | surface con
ain the prope
ture and pro | tact I
erties of solid surfa
operties of surface | layers in order | | | nature of solid surfaces and the operties of surface layers | | | | | | 3rd | to properly understand tribology phenomena. Solid surface contact II Explain the mechanisms for two-surface contact and true contact area wear with exercise problems. | | | | | Learn about the mechanisms for two-surface contact and true contact area wear. | | | | | | 4th | Explain
Amont
adhesid | n between solid sur
n dry friction and lu
on-Coulomb's laws
on theory of frictior
theory. | bricated friction,
, the causes of fric | tion,
for | Learn about | friction cause | s and friction theory. | | |---------------------------|--|-----------|--------------------------------|--|--|---------------|---|---|--|--| | | | 5th | Explain
the spe
friction | n between solid sur
n the temperature r
eed characteristics
properties in a vac
rature on friction, a | rises of friction surf
of friction and stick
cuum, the effects o | c-slip,
of | Learn about
test friction. | | cteristics and how to | | | | | 6th | Define | on solid surfaces I
and classify wear a
tical handling of ead
es. | and explain the
ch of the importan | t | Learn about
wear. | the definition | and classification of | | | | | 7th | Explain | urface wear II
In the concept of we
In methods of wear. | ar maps, and discu | JSS | Learn about methods. | wear maps a | nd wear testing | | | | | 8th | Explain | Ibrication I
I the physical signif
principles. | icance of fluid lubr | ication | Learn about lubrication. | the physical s | significance of fluid | | | | | 9th | Fluid lu
Explain
pressu | ıbrication II
ı Reynolds' fluid lub
re distribution anal | prication theory and
ysis of bearings. | d the | Learn about
the pressure | Reynolds' flui
distribution a | d lubrication theory and
analysis of bearings. | | | | | 10th | Explain | ary and mixed lubri
the concept of boution, and boundary
ties. | undary and mixed | cating | Learn about | Learn about boundary and mixed lubrication. | | | | | | 11th | Explain grease | ary and mixed lubri
the types, propert
and solid lubricant
tion in situations w | ties, and applications that are used for | ns of | Learn about the types, properties, and applications of grease and solid lubricants. | | | | | | 4th
Quarter | 12th | Explain
reform
of fricti | Surface reforming technology ixplain the physical significance of surface eforming technology, its method, and examples of friction wear improvement and future prospects. | | | | the physical sechnology, its ear improvem | significance of surface
methods, and examples
ent. | | | | | 13th | Explain | xplaings design xplain the basic aspects of design using journal earings as an example. | | | | Learn about the basic aspects of bearing design using journal bearings as an example. | | | | | Applie
Introduced
14th techn
role a | | | pplications of tribology in current technologies ntroduce a case from the many current echnologies where tribology plays an important ole and explain the relationship using basic nowledge. | | | | Learn about the current application of tribology in current technologies. | | | | | | 15th | Presen
Introdu | tation
uce videos or resea | rch related to tribo | ology. | Learn about | research rela | ted to tribology. | | | | | 16th | _ | ıl exam | | | | | | | | Evaluation | on Metl | hod and \ | Neight | (%) | | | | | | | | | Short Tests | | 5 | Report | Presentation | Beha | vior | Other | Total | | | Subtotal | | | | 40 | 10 | 20 | | 0 | 100 | | | Basic Profi | | 0 | | 0 | 0 | 0 | | 0 | 0 | | | Proficiency | , | | | 40 | 10 | 20 | | 0 | 100 | | | Cross Area
Proficiency | | 0 | | 0 | 0 | 0 | | 0 | 0 | | | | Akashi Co | ollege | | Year | 2024 | | | ourse | Advanced Electrical Circuits | |-------------------------------------|---|---|--|--|---|--|--|---
---| | | Informa | | | | 1 - | | | Title | | | Course C | | 6024 | | | | Course Category | | Specialize | ed / Elective | | Class For | | Lecture | | | | Credits | , | | Credit: 2 | | Departme | ent | Mechani
Enginee | | nd Electronic | System | Student Grade | | Adv. 1st | | | Term | | Second : | Seme | ester | | Classes per Wee | ek | 2 | | | Textbook | and/or
Materials | Although | h text | books are no | ot used, it is recon
ed as necessary. | nmended to bring | g a ref | erence bo | ok on electric circuits. In addition, | | Instructo | | HOSOKA | | | eu as necessary. | | | | | | | Objectiv | | , | | | | | | | | 1) Unders
2) Can pe
3) Can se | stand the serform and u | various theo
alysis and do
se appropri | esign
iate m | of a number
nethods for a | , . | its.
gning electrical ci | ircuits | | ltidimensional thinking. | | | ents will be | handed ou | ut for | review purp | oses at the end of | the lecture. It is | impoi | tant to do | them through self-study. | | Rubric | | | 1. | 11 1 | | | | | <u></u> | | | | | | eal Level | o various | Standard Level | | | Unacceptable Level | | Achievem | chievement 1 | | | nderstand the
eorems that
r electrical ci
in use them
nalysis. | form the basis rcuit analysis and | Understand the
theorems that fo
for electrical circ | orm th | ne basis | Do not understand the various theorems that form the basis for electrical circuit analysis. | | Achievem | ent 2 Can perform a design various electrical circu | | | | complex | Can perform and design various be circuits. | | | Cannot perform analysis and design various basic electrical circuits. | | Achievem | Achievement 3 | | | an select and
propriate monalyzing and
ectrical circuit | l use the most
ethod for
designing
its. | Can select and u
appropriate met
analyzing and de
electrical circuits | hod fo | or | Cannot select and use an appropriate method for analyzing and designing electrical circuits. | | Assigne | d Depar | tment Ob | | | | | | | | | Teachir | ng Metho | od | | | | | | | | | Outline | | basis for
this cour
to perfor | r elect
rse is
rm cir | trical engined
to learn abo
rcuit analysis | ering including ele
out the relationship
s. | ctronic, communi
between current | icatior
t and | n, and info
voltage in | e, and capacitance. It forms the rmation engineering. The aim of electrical circuits and to be able | | Style | | Classes
and assi | are m | nainly conducents every w | cted by taking not
eek. | es. There will be | hando | outs as ne | cessary. There will be exercises | | Notice | | guarante
assignm
This cou
Electric (
or have
Enginee
Students
If studer
case will | eed in relent re | n classes and
eports.
ssumes stud
its (compulson
Electrical and
I (selected do
d to have a land
ish, they car
he ayerage s | I the standard self
lents have taken E
ory in years 1 to 4
nd Electronics Eng
or year 5) taught i | -study time requi
lectrical Circuits I
) taught in the El-
ineering I (compi
n the Mechanical
f the contents of
xam outside of cirm and final exam | red for
and a
ectrical
ulsory
Engir
these
lass h | or pre-stud
II, Circuit
al and Cor
in year 4
neering De
subjects.
ours. The | include the learning time dy / review, and completing Theory, and Transient Analysis on nputer Engineering Department, and Electronics epartment in Akashi Kosen. evaluation for the exam in this rade. | | Charact | eristics | of Class / | [/] Div | ision in Le | arning | | | | | | □ Active | Learning | | | Aided by IC | CT | ☑ Applicable to | Remo | ote Class | ☐ Instructor Professionally
Experienced | | <u>C-</u> | DI- | | | | | | | | | | Course | rian | | Thor | no | | T, | Goals | | | | | | 1 ot | Then | | | | | stand how | to analyze AC circuits using the | | | | 1st
2nd | | ircuits | nd miscellaneous t | hooroms (1) | vector
Under | notation stand how | and vector locus. to analyze circuits using closed | | | | | | · · · · · · · · · · · · · · · · · · · | | 1 | Under | stand how | equations. to analyze circuits using the | | | | 3rd | | · | nd miscellaneous t | t | superposition, reciprocity, and compensation theorems. | | | | 2nd | 3rd
Quarter | 4th | | | nd miscellaneous t | l _i | Understand the methods of circuit analysis using Thévenin's, Norton's, and Millman's theorems. Understand resonant and mutual induction | | | | Semeste
r | | 5th | | | and mutual induc | tion circuits | circuit | s. | age, currents, and power in three- | | | | 6th | | e-phase AC | <u> </u> | | <u>phase</u>
Under | AC.
stand volt | age, currents and power in | | | | 7th | | orted wave A | | (| distorted wave AC. | | | | | | 8th | | mary of wee | | | | | content from weeks 1 to 7. | | | 4th | 9th One-port circuits | | | Understand one-port circuits. Understand the various parameters that represent | | | | | | | a | | | o-port circuits | | | | ort circuits | | | | 11th | Transient phenomena in single-ei | nergy circuits | Understand the transient phenomena in circuits where either inductance or capacitance is present. | | | |------------------------|----------|--|------------------|---|--|--| | | 12th | Transient phenomena in multiple | -energy circuits | Understand the t | ransient phenomena in circuits
itance and capacitance are | | | | 13th | Steady-state phenomena in distri
circuits | buted-element | Understand the basic concepts and circuit properties of transmission lines where resistance, inductance, and capacitance are distributed along lines. | | | | | 14th | Transient phenomena in distribut circuits | ed-element | Understand the transient phenomena in distributed-element circuits. | | | | | 15th | Summary of weeks 8 to 14 | | Understand the c | ontent from weeks 8 to 14. | | | | 16th | Final exam | | Understand the cweeks 9 to 14. | ontent from weeks 1 to 7 and | | | Evaluation Meth | od and \ | Weight (%) | | | | | | | | Examination | Exercise | | Total | | | Subtotal | | 70 | 30 | | 100 | | | Basic Proficiency | | 0 | 0 | · | 0 | | | Specialized Proficier | псу | 70 | 30 | | 100 | | | Cross Area Proficier | су | 0 | 0 | | 0 | | | Δ | kashi Co | ollege | Year | 2024 | | Course
Title | Advanced Heat Transfer | | | |-------------------------------------|---|---|---|---|--|--|--|--|--| | Course | Informa | tion | | | 1 | | | | | | Course Co | ode | 6025 | | | Course Categor | y Specializ | red / Elective | | | | Class For | mat | Lecture | | | Credits | Academ | ic Credit: 2 | | | | Departme | ent | Mechanic
Engineeri | al and Electroniong | System | Student Grade | Adv. 1st | | | | | Term | | Second S | emester | | Classes per We | ek 2 | | | | | Textbook | and/or
Materials | Original T | ext PDF file | | | | | | | | Instructo | | KUNIMIN | E Kanji | | | | | | | | Course | Objectiv | es es | | | | | | | | | (2) Can t
(3) Can t
(4) Can t | heoreticall
heoreticall
heoreticall | y handle cor
y handle pha
y handle ma | ady and unstead
nvective heat tra
ase change heat
terial transfer.
at exchangers. | dy state heat cond
insfer.
transfer. | uction. | | | | | | Rubric | | | | | | | | | | | | | | Ideal Level | | Standard Level | | Unacceptable Level | | | | Achievement 1 | | | Can theoretica
and unsteady
conduction su | ally handle steady
state heat
fficiently. | Can theoretical and unsteady s conduction. | ly handle stead [,]
tate heat | y Cannot theoretically handle steady and unsteady state heat conduction. | | | | Achievem | nent 2 | | Can theoretica convective her sufficiently. | ally handle
at transfer | Can theoretical convective heat | ly handle
transfer. | Cannot theoretically handle convective heat transfer. | | | | Achievem | nent 3 | | Can theoretica change heat t sufficiently. | ally handle phase
ransfer | Can theoretical change heat tra | | Cannot theoretically handle phase change heat transfer. | | | | | | | Can theoretica
material trans | ally handle
fer sufficiently. | Can theoretical
material transfe | | Cannot theoretically handle material transfer. | | | | | | | Can theoretica exchangers su | ally handle heat
ufficiently. | Can theoretical exchangers. | ly handle heat | Cannot theoretically handle hea exchangers. | | | | Assigne | d Depar | tment Ob | jectives | | | | | | | | Teachin | ig Metho | od | | | | | | | | | Outline | | This cour | se focuses on th | ne theoretical hand
Isfer class in the R | lling of heat trans | sfer engineering | J. It will cover the more advanced | | | | | | | | | | | osen Mechanical Engineering | | | | Style | | Departme | ent, and assume | es that students ha | ive learned the k | nowledge of the | e subject. | | | | Notice | | and the s
To achiev
Evaluatio | tandard self-stu
e the goals, stu
ns will be based | dv time required f | or pre-study / re
oughly pre-study
xams. | view, and compand review clas | rning time guaranteed in classes
pleting
assignment reports.
ss content for each week. | | | | Charact | eristics | • | Division in Le | | <u> </u> | | | | | | | Learning | <u> </u> | ☑ Aided by I | <u> </u> | ☑ Applicable to | Remote Class | ☐ Instructor Professionally Experienced | | | | | | | | | | | 127,00110.11000 | | | | Course | Plan | 1 | | | | | | | | | | | 7 | Гһете | | | Goals | | | | | | | 1st E | Basic theory | | | Understand the solutions, the beginning for he | e differential equations and their
pasic laws of heat transfer, and the
pat conduction. | | | | | | 2nd S | Steady heat stat | e conduction | | Can understand
steady heat co | d the problems of two-dimensional nduction. | | | | | | 3rd l | Jnsteady state h | neat conduction (1 |) | capacity systen | | | | | | 3rd
Quarter | 4th | Jnsteady state h | neat conduction (2 |) | Understand app
state heat cond
problems that a | proximation solutions for unsteady
luction and the thermal conductior
accompany phase changes. | | | | 2nd | | 5th F | orced convectiv | e heat transfer th | eory | Understand the convective hea | e governing equation for forced
t transfer. | | | | Semeste
r | | 6th / | Approximation so
neat transfer (1) | olutions for forced | convective | Understand the across a plate. | e laminar heat transfer of the flow | | | | | | 7th | Approximate soli
ransfer (2) | utions for forced c | | Understand the across a plate. | e laminar heat transfer of the flow | | | | | | 8th | Midterm exam | | | Can solve prob | lems related to weeks 2 to 7. | | | | | | 9th | Natural convecti | ve heat transfer th | neory | Understand natural convective heat transfer. | | | | | | | 10th F | Phase change he | eat transfer theory | (1) | Understand the film condensation theory. | | | | | | 4th | 11th F | Phase change heat transfer theory (1) | | | Understand the film boiling theory. | | | | | | Quarter | 12th | Material transfer | | | Understand Fick's law, diffusion coefficient, and one-dimensional diffusion phenomena. | | | | | | | 13th | Heat exchangers | 5 (1) | | | overview of heat exchangers. | | | | | 1 | 11001 | reac exerially ers | · (±/ | | oriaciotalla all | STOLVICTE OF FICAL EXCHAINGERS | | | | | | | Understand logarithmic mean temperature | | | | | | | | |----------------------------|----------------------------------|---------------|---|---|-------------|-------------------|-------------------|--|--|--| | | 14th | Heat exchange | rs (2) | | difference. | difference. | | | | | | | 15th | Heat exchange | rs (3) | | Understand | d temperature eff | ficiency ratio. | | | | | | 16th | Final exam | | | Can solve p | problems related | to weeks 9 to 15. | | | | | Evaluation N | Evaluation Method and Weight (%) | | | | | | | | | | | | Examination | | | | | | Total | | | | | Subtotal | 100 | 0 | 0 | 0 | 0 | 0 | 100 | | | | | Basic
Proficiency | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Specialized
Proficiency | 100 | 0 | 0 | 0 | 0 | 0 | 100 | | | | | Cross Area
Proficiency | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | А | .kashi Co | ollege | Year | 2024 | | Cour | | Environmental Science | | |---|--|--|---|---|--|--|---|---|--| | Course | Informa | tion | | | | IIU | E [| | | | Course Co | | 6026 | | | Course Categor | v Ger | neral / | Elective | | | Class Forr | | Lecture | | | Credits | <i>'</i> | / | Credit: 2 | | | Departme | ent | Mechani
Engineer | cal and Electronic | System | Student Grade | Adv | . 2nd | | | | Term | | First Ser | | | Classes per We | eek 2 | | | | | Textbook | | | | | Total Part 1 | | | | | | Teaching
Instructor | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ARE Mariyashi UT | RAISHI Toshihiro | | | | | | | | Objectiv | | ABE MONYOSHI, HI | KAISHI TUSHIIIIU | | | | | | | (1) Under
to examir
perspectiv
(2) Exami | rstand the
ne and exp
ve.
ine the rel | formation of the relationship be | ationships betwe
etween the envir | en life, the natural | environment, ar
e, think about pr | nd environi
oblems wit | mental
th envi | osystem, and acquire the ability issues from a multifaceted fronmental issues, and acquire | | | Rubric | | | | | | | | | | | | | | Ideal Level | | Standard Level | | | Unacceptable Level | | | Achievem | ent 1 | | global environ
basic knowled
ecosystem, ar
and explain th
between life, t
environment, | ge of the natural and can examine be relationships the natural and lissues from a | Understand the
global environm
basic knowledge
ecosystem, and
relationships be
natural environ
environmental i | nent and the of the nate th | ne
itural
in the | Do not understand the formation of the global environment and the basic knowledge of the natural ecosystem, and cannot explain the relationships between life, the natural environment, and environmental issues. | | | | | tment Ob | ojectives | | | | | | | | Teachin | g Metho | | | | | | | | | | Outline | | lthém. (8 | 3 weeks taught b
ures on environm | v Watanabe) | • | | | tems, and methods for preserving onal disparities. (7 weeks taught | | | Style | | The cou | rse is open to stu
ne course, studer | g slides and video:
dents from any de
its should carefully
and summarize the | partment. Classe
read through th | es will be to
e materials | aught
s distri | s appropriate.
as simply as possible. Before
buted in advance to fully | | | Notice | | guarante
assignm
The leve
score for | eed in classes and
ent reports.
els of achievemen | d the standard self
t will be evaluated | -study time requ
by faculty meml | iired for pro
bers in the | e-stud
follow | include the learning time
y / review, and completing
ving methods. The minimum
evaluation will be "1" for Hiraishi | | | Charact | eristics | of Class / | Division in Le | earning | | | | | | | □ Active | | , | ☑ Aided by I | • | ☑ Applicable to | Remote (| Class | ☐ Instructor Professionally Experienced | | | Course | Plan | | | | | | | | | | 200130 | . 1011 | | Theme | | | Goals | | | | | | | 1st | | the global enviror
on (Watanabe) | nment and the | Can explai
global env | p betw | process in which the current
ent was formed, and the
veen pollution and health that has
past. | | | | | 2nd | Development an impacts(Watana | | | Can explai
on the nat | n the i
ural er | impact of development acitivities nviromnemt. | | | | | 3rd | Global environme | ental issues (Wata | nabe) | | | current state of environmental
neasures to be taken on a global | | | | 1st | 4th | The basics of en | vironmental ecolog | gy (Watanabe) | and individ | dual or | concepts, types and distributions, ganism and population, and the ation ecology. | | | 1st
Semeste | Quarter | 5th | Biodiversity and | its crisis(Watanabo | e) | Can explai
the crisis if
of species. | t is fac | current state of biodiversity and
ing. Can calculate diversity index | | | | | | Ecosystem conse | ervation technique | s (Watanabe) | restoration | n, and | nical classification (conservation,
creation) to protect the
luding ecosystems using
concrete | | | | | 7th | The functions an ecosystems(Wat | | | Can explai
agricultura
urban ecos | al, urba | current state of forest ,
an and auqtic ecosystems and
as. | | | | | 8th | Ecosystem asses | sment(Watanabe) | | | m eco | system asses s ment using some | | | | 2nd
Quarter | 9th | Report assignme
Environmental is | stem assessment(Watanabe) t assignment briefing onmental issues and history | | | methods. Set up and implement solutions to environmental issues in one's life. Learn about the causes and history of modern environmental issues. | | | | | | | 10th | Life and society in | the Edo period | | | Learn about life and society before today's environmental issues arose. | | | | |---------------------------|-----------|------|---|---|------------------|-------------------------------------|---|---|----------------|--|--| | | | | 11th | Watch the "An Inconvenient Truth" and think about it. | | | | Learn about climate change issues. | | | | | | 12th | | Watch the "An Inconvenient Truth" and think about it. | | | Learn about clim
the challenges. | ate change issues | and recognize | | | | | | | | 13th | th "Ancient Futures: Learning from Ladakh" | | | Think about the t | | roblems due to | | | | | | | 14th | "Ancient Futures: | Learning from La | dakh" | Think about the t
geographic inequ | time gap in the plailities. | roblems due to | | | | | | | 15th | Return and amend report assignments | | | Add opinions to the faculty's comments sent via Teams about the assignment in week 9. | | | | | | | | | 16th | About SDGs | | | Understand SDGs | 5. | | | | | Evaluati | on M | etho | od and V | Veight (%) | | | | | | | | | | | | rcises(Wat | <u> </u> | Report(Hiraishi | Behavior | Portfolio | Other | Total | | | | Subtotal | | 50 | | 0 | 50 | 0 | 0 | 0 | 100 | | | | Basic
Proficiency | У | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | | | Specialize
Proficiency | | | 0 | 50 0 | | 0 | 0 | 100 | | | | | Cross Area
Proficiency | ross Area | | 0 | 0 | 0 | 0 | 0 | 0 | | | | | А | kashi Co | llege | | Year | 2024 | | C | Course
Title | Engineering Presentation II | | |----------------------|--------------------------|--|---|--|--|---|------------------------------|---|--|--| | Course | Informa | tion | | | | | | | | | | Course Co | | 6027 | | | | Course Categor | ry | Specializ | ed / Compulsory | | | Class Forr | mat | Seminar | | | | Credits | | School C | redit: 1 | | | Departme | ent | Mechanica
Engineeri | | d Electronic | System | Student Grade | | Adv. 2nd | i | | | Term | | Second S | | ter | | Classes per We | ek | 後期:2 | | | | Textbook
Teaching | and/or
Materials | | | | | | | • | | | | Instructor | = | HIRAISHI | Tosh | nihiro,KUNIN | INE Kanji | | | | | | | | Objectiv | | | | | | | | | | | way that | re knowled
students f | lge in a wide
om differen | e rang
t spe | ge of engine
cialties can | ering-related field
understand . | ds through prese | entatio | ns of one' | s Research Studies presented in a | | | Rubric | | | 1 | | | la: | | | 1 | | | | | | | al Level | | Standard Level | | | Unacceptable Level | | | Achievem | Achievement 1 | | | dents from o | es in a way that
different
fully understand | Can present on
Research Studi
students from a
specialties can
discuss it with | es in a
differe
under | a way that
ent
estand and | students from different ' | | | Assigne | d Depar | tment Obj | jecti | ves | | | | | | | | | g Metho | | | | | | | | | | | Outline | | presentat | This course will have lectures and exercises on fundamental approaches to written presentations, gr
presentations, oral presentations, etc. in order to enhance students' abilities to express technical ma
Teaching staff will offer their impressions and critiques to raise the levels of the content. | | | | | | | | | Style | | purposes, | , and | their resear | ch plans, followed | d by a question- | and-aı | nswer sess | ions for their Research Studies, its sion. In the latter half of the give presentations using slides. | | | Notice | | guarantee
assignme
have prep
students | ed in
ent repoared
prese | classes and
ports. Emph
by themsel
entations. | the standard self | -study time requessenting and distermined time. S | uired fo
cussin
Studer | or pre-stung the sume sum | s include the learning time
dy / review, and completing
maries and slides that students
sected to be able to evaluate other | | | Charact | eristics (| of Class / | | - | | viii rioc be engibi | <u> </u> | - Varaaciorii | | | | ☑ Active | | <u> </u> | | Aided by IC | | ☑ Applicable to | o Rem | note Class | ☐ Instructor Professionally Experienced | | | Course | Plan | | | | | | | | | | | | | | Them | | | | Goals | i | | | | | | 1st F | Creati
Themo
Resea
From o
oriefin | ing slides (Pa
e 1 is to pre
arch Studies
different spe | iction to the Reservant 1, Hiraishi) sent the introduction 10 minutes so ecialties can under signment, prepara | tion to the
that students
rstand. After | the ba | ackground
ods of one | at to be careful in communicating
I, research purposes, and research
Is own Research Studies to
different specialties. | | | | | 2nd C | Creati | e 1 (Introdu
ing slides (Pa
as above | ction to the Rese
art 2, Hiraishi) | arch Studies): | backg
one's | round, pu | erials to communicate the irposes, and research method of larch Studies to students from lties. | | | | | 3rd k | Presentation of Theme 1 (Part 1, Hiraishi Kunimine) 3rd An 8-minute presentation (a bell will ring minutes) and a 10-minute Q&A with ever Students will score each other's presentat | | | | | rch methoudents | ate the background, purposes, and ad of one's own Research Studies on different specialties. Can also bout the presentations. | | | 2nd
Semeste
r | 3rd
Quarter | | | ntations (Pa
as above | rt 2, Hiraishi and | Kunimine) | resea
to stu | rch methoudents | ate the background, purposes, and add of one's own Research Studies on different specialties. Can also bout the presentations. | | | | | | | ntations (Pa
as above | rt 3: Hiraishi and | Kunimine) | resea
to stu | rch methoudents | ate the background, purposes, and of one's own Research Studies on different specialties. Can also bout the presentations. | | | | | | | ntations (Pa
as above | rt 4: Hiraishi and | Kunimine) | resea
to stu | rch methoudents | ate the background, purposes, and of one's own Research Studies on different specialties. Can also bout the presentations. | | | | | | | ntations (Pa
as above | rt 5: Hiraishi and | Kunimine) | resea
to stu | rch methoudents | ate the background, purposes, and of one's own Research Studies on different specialties. Can also bout the presentations. | | | | | | Presentations (Part 6: Hiraishi and Kuniming
Same as above | | | | resea
to stu | rch methoudents | ate the background, purposes,
and of one's own Research Studies on different specialties. Can also bout the presentations. | | | | | 9th | Theme 2 (Special slides preparation Prepare one's own review presentation | (Part 1: Kunimiń
n Research Studie | e) ' | Can prepare slid
Studies review p | es and materials
resentation. | for Research | | | |---------------------|-------------------------------|--------------|---|---------------------------------------|-------------------------------|--|--|---------------------------|--|--| | | | 10th | Each student show minutes and join everyone. | uld present Them
n a 5-minute disc | e 4 within 10
cussion with | research method discussion of one | Can communicate the background, purposes, research method, experiment results, and discussion of one's own Research Studies. Can also ask questions about the presentations. | | | | | | | 11th | Presentations (Pa
Same as above | rt 2: Kuniminei ar | nd Hiraishi) | research method
discussion of one | Can communicate the background, purposes, research method, experiment results, and discussion of one's own Research Studies. Can also ask questions about the presentations. | | | | | | 4th
Quarte | 12th
r | Presentations (Pa
Same as above | rt 3: Kunimine an | d Hiraishi) | Can communicate the background, purposes, research method, experiment results, and discussion of one's own Research Studies. Can also ask questions about the presentations. | | | | | | | 13th | | Presentations (Pa
Same as above | rt 4: Kunimine an | d Hiraishi) | Can communicate the background, purposes, research method, experiment results, and discussion of one's own Research Studies. Can also ask questions about the presentations. | | | | | | | | | Presentations (Pa
Same as above | rt 5: Kunimine an | d Hiraishi) | research method
discussion of one | te the background, experiment rese's own Researches about the pres | últs, and
Studies. Can | | | | | | 15th | Presentations (Pa
Same as above | rt 6: Kunimine an | d Hiraishi) | research method discussion of one | te the background
d, experiment rese's own Research
ns about the pres | ults, and
Studies. Can | | | | | | 16th | No final exam | | | | | | | | | Evaluati | <u>ion Me</u> | thod and | Weight (%) | | | | | | | | | | ŀ | Presentation | Mutual
Evaluations
between
students | Number of questions | | | Others | Total | | | | Subtotal | 6 | 50 | 30 | 10 | 0 | 0 | 0 | 100 | | | | Basic
Proficienc | | | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Specialized
Proficiency 60 | | 30 | 10 | 0 | 0 | 0 | 100 | | | | | Cross Area
Proficiency 0 0 | | | 0 | 0 | 0 | 0 | 0 | | | | Д | Akashi Co | ollege | Year | 2024 | | Course
Title | Re | esearch Studies | | |--|---|---|--|--|---|---|-----------------------------|--|--| | Course | Informa | tion | | | | | | | | | Course Co | | 6028 | | | Course Category | / | | / Compulsory | | | Class For | mat | Seminar | | | Credits | Schoo | I Credi | edit: 8 | | | Departme | ent | Mechanic
Engineeri | al and Electronio | System | Student Grade | Adv. 2 | 2nd | | | | Term | | Year-rour | | | Classes per Wee | ek 8 | | | | | Textbook | | | | | ' | | | | | | | Materials | | | | | | | | | | Instructo | | | | | | | | | | | (1) Can ir
perspectiv
(2) Can e
(3) Can v | ve toward
ingage in l
vrite techn | nd deepen e
solving prob
earning and
ical docume | olems.
research indepe
nts in English by | amine it theoretica
indently and contin
creating an Englis
ie at the research | nuously.
sh abstract of the | annual rese | | creatively from a wide | | | Rubric | | | | | | | | | | | | | | Ideal Level | | Standard Level | | L | Jnacceptable Level | | | Achievem | nent 1 | | Can integrate expertise, and apply it theore systematically creatively fron perspective to problems. | examine and
etically,
, practically, and
n a wide | Can integrate an
expertise, and e
theoretically, sy
practically, and
a wide perspect
solving problem | examine it
stematically,
creatively fro
ive toward | om p | Cannot integrate and deepen expertise, and examine it heoretically, systematically, oractically, and creatively from wide perspective toward olving problems | | | Achievem | nent 2 | | Can actively e
and research i
continuously. | ngage in learning
ndependently and | Can engage in la
research indepe
continuously. | earning and
ndently and | l n | Cannot engage in learning and esearch independently and ontinuously. | | | Achievement 3 | | | in English and international of | onferences by aglish abstract of | Can write techn
in English by cre
abstract of the a
report. | eating an Eng | glish d | Cannot write technical locuments in English by reating an English abstract of the annual research report. | | | | | | Can improve a presentation s at the review | kills by giving one | Can improve presentation skills by giving one at the review presentation. | | | Cannot improve presentation kills by giving one at the eview presentation. | | | Assigne | d Depar | tment Ob | jectives | | | | | | | | Teachin | g Metho | od | | | | | | | | | Outline | | that the s | students have le
also learn pract
s, do not have ar | arned so far and a
ical techniques for | pplying it to indiv
engineering rese | idual researd
arch. Resear | ch assi
ch sub | rating engineering knowledge
gnments of their own choice.
ojects, unlike exercise
unknown areas while repeating | | | Style | | Students | will be assigned | ill be assigned to each laboratory and receive research guidance from the supervisors. | | | | | | | Notice | | guaranted
assignme
knowledg
voluntaril | ed in classes and
int reports. Stud
Je they have gail
y and based on | d the standard self
ents should procee
ned from previous | -study time requi
ed with research
study. Specificall
much as possible | ired for pre-s
voluntarily a
v. each rese | study /
nd pro
arch p | nclude the learning time
review, and completing
actively based on their
rocess should be carried out
ues given and think about | | | Charact | eristics | of Class / | Division in Le | earning | | | | | | | ☑ Active | Learning | · | ☐ Aided by I | СТ | ☑ Applicable to | Remote Cla | | ☐ Instructor Professionally
experienced | | | Course | Dlan | | | | | | | | | | Course | riall | - | Theme | | Ι. | Goals | | | | | | | | Гheme
Individual resear | ch | (| | paratel | y under each supervisor's | | | | | 2nd S | Same as above | | | Same as abo | ve | | | | | | | Same as above | | | Same as abo | | | | | | 1st | 4th 9 | Same as above | | | Same as abo | ve | | | | | Quarter | 5th S | Same as above | | | Same as abo | ve | | | | | | | Same as above | | | Same as abo | | | | | 1st
Semeste | | | Same as above | | | Same as abo | | | | | r | | | Same as above | | | Same as abo | | | | | | | | Same as above | | | Same as abo | | | | | | | | Same as above | | | Same as abo | | | | | | 2nd | | Same as above Same as above | | | Same as above | | | | | | Quarter | | Same as above | | | Same as above Same as above | | | | | | | | Same as above | | | Same as above Same as above | | | | | | | | Same as above | | | Same as abo | | | | | | 1 | 1 | 45 45070 | | | | | | | | | | 16th | No final exar | n | | | | | | | |--------------------------|---------------------|--------|---------------|---------------------|----------------|-----------------|--|-------|--|--| | | | 1st | Same as abo | ve | | Same | as above | | | | | | | 2nd | Same as abo | ve | | Same | Same as above | | | | | | | 3rd | Same as abo | ve | | Same as above | | | | | | | 3rd | 4th | Same as abo | ve | | Same | as above | | | | | | Quarter | 5th | Same as abo | ve | | Same | as above | | | | | | | 6th | Same as abo | ve | | Same | as above | | | | | | | 7th | Same as abo | ve | | Same | as above | | | | | 2nd | | 8th | Same as abo | ve | | Same | as above | | | | | Semeste | | 9th | Same as abo | ve | | Same | as above | | | | | | | 10th | Same as abo | ve | | Same | | | | | | | | 11th | Same as abo | ve | | Same | as above | | | | | | 4th | 12th | Same as abo | ve | | Same | as above | | | | | | Quarter | 13th | Same as abo | ve | | Same | as above | | | | | | | 14th | Same as abo | me as above | | | as above | | | | | | | 15th | Review prese | entation | | Can p
questi | in present one's research results and answer estions, etc. | | | | | | | 16th | No final exar | n | | | | | | | | Evaluat | ion Meth | od and | Weight (%) | | | | | | | | | | | | ch paper | Research activities | Annual researd | ch | Research publication | Total | | | | Subtotal | otal 40 | | | 20 | 20 | | 20 | 100 | | | | Basic Pro | Basic Proficiency 0 | | | 0 | 0 | | 0 | 0 | | | | | Specialized 40 | | 20 | 20 | | 20 | 100 | | | | | Cross Area Proficiency 0 | | | |
0 | 0 | | 0 | 0 | | | | А | kashi Co | ollege | Year | 2024 | | Course
Title | Mechatro-system | | | |------------------------|----------------|---|---|--|--|--|---|--|--| | Course 1 | Informa | tion | | | | | | | | | Course Co | ode | 6029 | | | Course Categor | y Specializ | ed / Elective | | | | Class Forr | mat | Lecture | | | Credits | Academi | c Credit: 2 | | | | Departme | ent | Engineerir | | System | Student Grade | Adv. 2nd | 1 | | | | Term | | First Sem | ester | | Classes per We | ek 2 | | | | | Textbook
Teaching | | | | | | | | | | | Instructor | | SEKIMOR | Daisuke | | | | | | | | Course | Obiectiv | es | | | | | | | | | (1) Under
(2) Under | stand the | basic knowle
to fuse sen | edge and operat
sors and actuato
intelligent by pi | ors and can create | ensors and actua
a basic system. | tors and can co | ntrol them with a computer. | | | | Rubric | | | | | | | | | | | | | | Ideal Level | | Standard Level | | Unacceptable Level | | | | Achievem | ent 1 | | Understand the basic knowledge and operating knowledge principles of sensor and principles of | | | operating
nsor and
can control them | Do not understand the basic knowledge and operating principles of sensor and actuators and cannot control them with a computer. | | | | Achievem | ent 2 | | Understand ho
and actuators
accurately crea
system. | | Tonderstand nov | w to fuse senson
and can create a | | | | | Achievem | ent 3 | | Can accurately make the entire system intelligent by programming. Can make the entire system intelligent by programming. Cannot make the entire intelligent by programming. | | | | | | | | Assigne | d Depar | tment Obj | ectives | | | | | | | | Teachin | g Metho |
od | | | | | | | | | Outline | | information
machinery
subsysten
methods
explained | on engineering not class content ns: (1) sensors, will be explained | secessary for mech
is based on the su
(2) actuators, and
I step-by-step star | natronics. In add
ubject of autonor
d (3) control syst
ting with the ba | ition, there will
mous mobile rob
tems. The actua
sics. Finally, the | chanical, electrical, electronic and
be exercises using the actual
oots and focuses on their
il mechanisms and specific control
idea of integrating these will be | | | | Style | | Lectures v
materials. | | Il be conducted in accordance with the handouts. The course also includes exercises using robo | | | | | | | Notice | | guarantee | ed in classes and
nt reports. | amount to 90 hou
I the standard self
more of classes v | -study time requ | iired for pre-stu | s include the learning time
dy / review, and completing | | | | Charact | eristics (| of Class / I | <u>Division in Le</u> | arning | . | | | | | | □ Active | Learning | | ☐ Aided by IO | Т | ☐ Applicable to | o Remote Class | ☐ Instructor Professionally
Experienced | | | | Course I | Plan | | | | | | | | | | | | Т | heme | | | Goals | | | | | | | 1st A | n outline of mol | bile robots | | robots such as | basic configurations for mobile
hardware, software, and
also operate an actual mobile
ple program. | | | | | | 2nd M | licrocomputer co | ontrol | | of microcomput
systems. Also u | functions and basic configurations
ers that control entire robot
inderstand specific control
microcomputer programming | | | | | | 3rd S | ensor principles | and control meth | ous | devices such as | principles and control methods of optical sensors, force sensors, rotary encoders, which are widely for robots. | | | | 1st
Semeste
r | 1st
Quarter | 4th I | nfrared proximit | y sensor control | | by doing infrare exercises. Can | atrol circuits and interface circuits
and proximity sensors control
use an actual infrared proximity
about how to detect objects. | | | | | | 5th R | otary encoder c | ontrol | | encoder control rotary encoder | ntrol circuits, etc. by doing rotary
exercises. Can use an actual
to learn how to measure a motor's
angular speed, etc. | | | | | | 6th A | ctuator principle | es and control met | :hods | of the main typ
stepping motor | ir principles and control methods
es of actuators of robots, such as
s and DC motors. | | | | | | | C motor contro | (1) | | Understand control circuits and interface cir
by doing DC motor control exercises. Can u
actual DC motor to learn driving methods for
motor's forward-reverse, PWMs, etc. | | | | | | | 8th | DC motor co | ntrol (2) | | | Under
contro
learn | rstand PID con
ol exercises. Co
how to contro | trol theory by
an use an actu
l a motor's sp | doing DC motor all DC motor to eed. | | |--------------------------|----------------|-----------------------------|---------------------------------------|--|-----------|----------|---|--|--|-------------------------------------|--| | | | 9th | DC motor co | ntrol (3) | | | Same | Same as above | | | | | | | 10th | Position cont | rol of a mobile | robot (1) | | Understand the mechanisms and kinematics of mobile robots. Also understand position control methods that use feedforward and feedback. | | | | | | | | 11th | Position cont | osition control of a mobile robot (2) | | | | Can measure position accuracy through feedforward and feedback, and discuss the results through a mobile robot's position control exercises. | | | | | | 2nd
Quarter | 12th | Position estimation of a mobile robot | | | | Understand dead reckoning, a practical method of estimating a mobile robot's position, and learn about position estimation methods that use an actual mobile robot. | | | | | | | | 13th Obstacle avoidance (1) | | | | | Learn how to guide the mobile robot to its destination while detecting and avoiding obstact using the infrared proximity sensors mounted of it. | | | oiding obstacles | | | | | 14th | Obstacle avo | idance (2) | | | Same | as above | | | | | | | 15th | Obstacle avo | idance (3) | | | Same as above | | | | | | | | 16th | Final exam | | | | | | | | | | Evaluati | on Meth | nod and | Weight (%) |) | | | | | | | | | | Exar | nination | Presentation | Mutual
Evaluations
between
students | Behavior | Portfoli | 0 | Other | Exercise | Total | | | Subtotal | 50 | | 0 | 0 | 0 | 0 | | 0 | 50 | 100 | | | Basic
Proficienc | o 0 | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | | | Specialize
Proficienc | | | 0 | | 0 | 50 | 100 | | | | | | Cross Are
Proficience | | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | | | Д | Akashi Co | ollege | Year | 2024 | | | Course
Title | Computational Mechanics | | | |-------------------------------------|--|--|---|--|---
---|--|---|--|--| | Course | Informa | tion | | | | | | | | | | Course Co | ode | 6030 | | | | Course Categor | y Speciali | ized / Elective | | | | Class For | mat | Lecture | | | | Credits | Academic Credit: 2 | | | | | Departme | ent | Mechani
Engineer | cal and Electror
ring | ic System | S | Student Grade | Adv. 2r | nd | | | | Term | | First Ser | nester | | | Classes per Wee | /eek 2 | | | | | Textbook
Teaching | | Original | Text | | | | | | | | | Instructo | r | KUNIMIN | NE Kanji | | | | | | | | | Course | Objectiv | es | | | | | | | | | | (2) Can d
(3) Can d
(4) Can d | letermine
letermine | numerical s
numerical s | ifferential meth
olutions for two
olutions for one
olutions for mo | o-dimensiona
e-dimensiona | l unstead | y-state problen | ns. | | | | | Rubric | | | T | | | | | | | | | | | | Ideal Level | | | Standard Level | | Unacceptable Level | | | | Achievem | nent 1 | | differential n | tand the basi
nethods. | Inderstand the
lifferential meth | | Do not understand the basics o differential methods. | | | | | Achievem | vement 2 Can fully determine numerical solutions for two-dimensional steady-state problems. Can determine numerical solutions for two-dimensional steady-state | | | | | | o-dimensional | Cannot determine numerical solutions for two-dimensional steady-state problems. | | | | Achievem | nent 3 | | solution's for | ermine nume
one-dimensi
ate problems | ional s | Can determine isolutions for one insteady-state | e-dimensional | Cannot determine numerical solutions for one-dimensional unsteady-state problems. | | | | | Can fully determine numerical Can determi | | | | | | numerical
oving boundary | Cannot determine numerical solutions for moving boundary problems. | | | | Assiane | ed Depar | tment Ob | | | | <u></u> μετουιστείς. | | | | | | | ng Metho | | | | | | | | | | | Outline | | assistand
problem
are typic
coagulat | ce of computers
s. The course w
ca numerical so
ion. | s. In this cour
vill explain the
lutions. It wil | rse, stude
e basic th
Il also exp | ents will be guid
leory and specification and specification and specification and specification and specification and security secu | ded through the fic ways to cale ply them to mo | present physical phenomena with the basic formula of heat conduction lculate differential methods, which oving boundary problems, such as | | | | Style | | Engineer | ring Departmen | t and Advand
hem. Studen | ced Heat ⁻ | Transfer from t | the school's ad | elected for year 5) at the Mechanica
dvance courses, as the study
ents to meet the Course Objectives | | | | Notice | | guarante
assignme
In order
The eval
Students | eed in classes a
ent reports.
to achieve the
luation will be b
s who miss 1/3 | nd the standa
goals, studer
based on four
or more of cl | ard self-st
nts are ad
assignme | tudy time requi
Ivised to thorou
ents and two qu | ired for pre-stud
ughly pre-stud
uizzes. | rs include the learning time
udy / review, and completing
ly and review each week's class.
n. | | | | Charact | eristics | of Class / | Division in I | <u>_earning</u> | | | | | | | | ☐ Active | Learning | | ☑ Aided by | ICT | Ū. | Applicable to | Remote Class | S ☐ Instructor Professionally Experienced | | | | | | | | | | | | | | | | Course | rian | | Thoma | | | Т | Goals | | | | | | | 1st | Theme Heat conductio | n oquations | | (| Can derive a t | hermal conduction equation of a | | | | | | 2nd | Basics of the di | · · |
thod | (| Can derive the derivatives of | rdinate system. e differential formula for the the first and second floors | | | | | | 3rd Quiz on two-dimensional steady-state problems | | | | | | d mathematically.
ne differential formula for two-
teady-state problems and how to
an do a quiz on content from Week | | | | 1st | 1st
Quarter | 4th | Exercise (1) | | | (| 2.
Can create a p
steady-state p | program for two-dimensional problems. | | | | Semeste
r | 5th Exercise (2) | | | | | | e numerical solutions using the ted in Week 4. | | | | | | | 6th | One-dimension | al unsteady- | state prol | ploms (1) | Understand th | ne solution by the forward ethod and its algorithm. | | | | | | 7th | One-dimension | al unsteady- | state prol | (2) | Can understan | nd the solution by reverse ethod and its algorithm. | | | | 8th | | | Exercise (3) | | | | Can create programs for one-dimensional | | | | | | 8th Exercise (3) 2nd 9th Exercise (4) | | | | | | unsteady-state problems. Can determine numerical solutions using the program created in Week 8. | | | | | | 10th | Moving boundary | y problem | | boundary c | onditions, and c | tions and initial and
an find an approximate
n problems with phase | | | |----------------------------|------------|------------------|---------------|-------------------|------------------------------|--|--|--|--| | | 11th | Quiz on the hand | dling moving | boundary surfaces | as a typical
surfaces the | Understand the fixed temperature point method as a typical example of handling boundary surfaces that may move over time. Can do a quiz on content from Week 10. | | | | | | 12th | Handling moving | j boundary si | urfaces (2) | Understand
point meth | | of a fixed temperature | | | | | 13th | Exercise (5) | | | Can create point method | Can create a program using a fixed temperature point method. | | | | | | 14th | Exercise (6) | | | | Can create a program using a fixed temperature point method. | | | | | | 15th | Exercise (7) | | | Can determ
program cr | Can determine numerical solutions using the program created in Weeks 13 and 14. | | | | | | 16th | No final exam | | | 0 | 0 | | | | | Evaluation | Method and | l Weight (%) | | | | | | | | | | Report | Short Tests | | | | | Total | | | | Subtotal | 70 | 30 | 0 | 0 | 0 | 0 | 100 | | | | Basic
Proficiency | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Specialized
Proficiency | 70 | 30 | 0 | 0 | 0 | 0 | 100 | | | | Cross Area
Proficiency | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | А | kashi Co | llege | Year | 2024 | | С | Course
Title | Energy Technology II | |---|---|--
--|--|--|--|--|---| | Course : | Informat | ion | | <u>.</u> | | • | | | | Course Co | ode | 6031 | | | Course Catego | ry | Specialize | ed / Elective | | Class Forr | nat | Lecture | | | Credits | | Academic | Credit: 2 | | Departme | nt | Enginee | | c System | Student Grade | | Adv. 2nd | | | Term | | First Ser | nester | | Classes per We | eek | 2 | | | Textbook
Teaching | | | | | | | | | | Instructor | | TANAKA | Seiichi | | | | | | | The cours
(1) Can re
(2) Under
(3) Under
To achieve
(a) Solve
(b) Descri
performar | ecognize fustand and stand the these goeach week be the app | es are as fouture problecan explain basic issue als, studer s's exercise propriate expresses als. | ems and discuss
n the principles of
s of each thermonts
will need to do
guestions and re | of structural and en
o-fluid machine and
o the following self
esearch the relevar
lts and consideration | ergy conversion plan, conduct, study: t topics to enha | of the
and ev
ance ur | ermal engir
valuate per
nderstandi | support livelihoods.
nes and fluid machinery.
formance tests.
ng.
prepare experimental reports for | | Rubric | | | | | | | | | | | | | Ideal Level | | Standard Leve | | | Unacceptable Level | | Achievem | ent 1 | | Can accuratel problems and for energy contechnologies to livelihoods. | | Can recognize
and discuss me
energy convers
that support liv | easures | s for
chnologies | Cannot recognize future problems and discuss measures for energy conversion technologies that support livelihoods. | | Achievem | ent 2 | | logically expla
structural and
conversion of | Accurately understand and logically explain the principles of structural and energy conversion of thermal engines and fluid machinery. | | | ain the
al and
thermal
chinery. | Do not understand and cannot explain the principles of structural and energy conversion of thermal engines and fluid machinery. | | Achievem | ent 3 | | issues of each | can properly plan,
evaluate | Understand the
each thermo-fl
can plan, cond
performance to | uid ma
uct, ar | achine and | | | Assigne | d Depart | ment Ob | ojectives | ectives | | | | | | | g Metho | | | | | | | | | Outline | | Students
learn the
specifica
practical | e approaches to p
ally, they will und
I use and learn th | performance calcule
erstand the structu | ation and experi
Ires and principl
erformance eval | imenta
es of t
luation | l evaluatio
hermal en | technologies and will practically
n that designing requires. More
gines and fluid machinery in
lese things, students will actually | | Style | | each uni
following
student | it and two labs.
g the questions a
is having difficult | In order to achieve | the goals, stud
ork in class as w
nould go back to | ents shell as to the b | nould ensu | e will be assignment exercises for re their understanding by ses assigned in each class. If a ley don't understand, they should | | Notice | | Heat Tra
not mea
students
Students
based or
first clas
This cou
classes a
Students | ansfer. Therefore in that students was should come an so need to submit in the results of the second of the second of the standard in the standard in who miss 1/3 comes who miss 1/3 comes in the standard | , keep the textbool who have not taker and taker and taker as
par an appared to the planned experim amount to 90 houself-study time record more of classes were with the planned experiments of the text and | s for those sub, those courses e faculty as mu-
t of a prerequisment. Other deta
rs in total. Thes | jects a
are un
ch as p
ite for
illed ev
se hour
cudy / I | t hand and
able to tak
cossible.
earning the
raluation of
the include the sinclude | modynamics, Fluid Mechanics, and I review them. However, this does to this course. In these cases, e credit. They will be evaluated riteria will be explained during the the learning time guaranteed in d completing assignment reports. rade. | | Charact | eristics c | of Class / | <u>Division in Lo</u> | earning | 1 | | | | | □ Active | ctive Learning | | | | | | ote Class | ☐ Instructor Professionally Experienced | | Course | Plan | | | | | | | | | 220.00 | | | Theme | | | Goals | | | | | | 1st | Energy conversion | on | | Under | | explain types of energy
pecially thermal engine | | 1st
Semeste | 1st | 2nd | Cycle and therm (1) | al efficiency of the | mal engines | Under | stand an a | air theory cycle hypothesis and
ermal efficiency of a cycle for a
engine. | | r | Quarter | 3rd | Cycle and therm (2) | al efficiency of the | mal engines | Can ca
a typi
differe | e thermal efficiency of a cycle for all engine and explain the een the thermal efficiency required cycle, after comparing their | | | 4tl | :h | Analysis and measurer performance (1) | ment of thermal engine | lindicated power and dia | efficiency that are required | | | |--------------------------|---------|---|-----------------------------|---|--|--|--| | 5tl | :h | Analysis and measurer performance (2) | ment of thermal engine | Understand and can app
methods of measuring p
accounting that are requ
thermal engine's perform | uired to evaluate a | | | | 6tl | :h | Performance evaluation of thermal engines (Lab 1) | | engine that is in line wit
members of the class in | ove performance or an internal combustion hobjectives presented by order to gain a hands-on or the manufacture of manufactu | | | | 7tl | :h | Performance evaluatio
1) | n of thermal engines (Lab | Can conduct the perform
experiment for an intermal
was planned the previous
into a report. (Report as | nal combustion engine that us week, and compile it | | | | 8tl | :h | Energy conversion in f | luid machinery | Can introduce fluid mac
water vehicles, windmill
and explain their princip | s, etc., and understand | | | | 9tl | :h | Performance and effici | ency of turbo machines (1) | Understand and can app
types and their general | Understand and can apply the turbo machines types and their general theory. | | | | 10 | Oth | Performance and effici | ency of turbo machines (2) | Understand and can exp
specific phenomena of f | plain the operation and the luid machinery. | | | | 11 | 1th | Analysis and measurer performance | ment of fluid machinery | Understand and can app
specific speed, performa
laws that are required to
engine's performance. | oly information such as the ance curve, and similarity o evaluate a thermal | | | | 2nd
Quarter | 2th | Performance evaluatio | n of fluid machinery (Lab 2 | Can plan a pump perfor experiment that is in lin presented by members gain a hands-on unders learned up to week 11. | e with objectives
of the class in order to | | | | 13 | 3th | Performance evaluatio | n of fluid machinery (Lab 2 | Can conduct the perform experiment for an interm was planned the previous into a report. (Report as | nal combustion engine that us week, and compile it | | | | 14 | 4th | Principles and power g cells (1) | eneration systems of fuel | Understand and can exp
types of fuel cells and the | plain the principles and neir systems. | | | | 15 | ōth | Principles and power g cells (2) | eneration systems of fuel | Understand fuel cells' the
balance and can calcular
efficiency of real ones. (| ermal and material
te the theoretical | | | | 16 | 5th | Final exam | | | | | | | Evaluation Method | d and V | Weight (%) | | | | | | | | Exe | rcise | Report | Final exam | Total | | | | Subtotal | 20 | | 40 | 40 | 100 | | | | Basic Proficiency | 0 | | 0 | 0 | 0 | | | | Specialized Proficiency | 20 | | 40 | 40 | 100 | | | | Cross Area Proficiency | 0 | | 0 | 0 | 0 | | | | (2) Underst Rubric Achievemer | de
at
t
and/or
laterials
Objective
atically ur
tand the e | Lecture Mechanical a Engineering Second Sem Material dist MORISHITA Ses Address of various | nester
tribution
Tomohiro
properties of fous factors on r | System Fracture phenome material strength | Course Categor
Credits
Student Grade
Classes per We | | i ' | red / Elective
ic Credit: 2 | |---|--|--|--|---|---|----------------------|-------------------------|--| | Class Forma Department Term Textbook a Teaching M Instructor Course O (1) Systema (2) Underst Rubric Achievemer | at t and/or laterials bjective atically ur tand the e | Lecture Mechanical a Engineering Second Sem Material dist MORISHITA es Inderstand the effects of vario | nester
tribution
Tomohiro
properties of fous factors on i | racture
phenome | Credits Student Grade | | Academi
Adv. 2nd | ic Credit: 2 | | Department Term Textbook a Teaching M Instructor Course O (1) Systema (2) Underst Rubric Achievemer | and/or
laterials
Objective
atically ur
tand the e | Mechanical a Engineering Second Sem Material dist MORISHITA es anderstand the effects of various I | nester
tribution
Tomohiro
properties of fous factors on i | racture phenome | Student Grade | eek | Adv. 2nd | | | Term Textbook a Teaching M Instructor Course O (1) Systema (2) Underst Rubric Achievemer | and/or
laterials
Objective
atically ur
tand the e | Engineering Second Sem Material dist MORISHITA PS Inderstand the effects of various | nester
tribution
Tomohiro
properties of fous factors on i | racture phenome | | eek | | 1 | | Textbook at Teaching M Instructor Course O (1) Systema (2) Underst Rubric Achievemen | Descrive atically ur tand the e | Material dist MORISHITA PS Inderstand the effects of various | tribution Tomohiro properties of fous factors on i | racture phenome | Classes per We | eek | 2 | | | Teaching M Instructor Course O (1) Systema (2) Underst Rubric Achievemer | Descrive atically ur tand the e | MORISHITA es nderstand the effects of vario | Tomohiro properties of fous factors on i | racture phenome | | | | | | Course O (1) Systema (2) Underst Rubric Achievemer | atically ur
tand the e | es
nderstand the
effects of vario | properties of fous factors on i | racture phenome | | | | | | (1) Systema
(2) Underst
Rubric
Achievemer | atically ur
tand the e | nderstand the effects of vario | ous factors on i | racture phenome | | | | | | Achievemer
Achievemer | nt 1 | C | | | enon. | | | | | Achievemer | nt 1 | C | | | | | | | | Achievemer | nt 1 | | Ideal Level | | Standard Level | | | Unacceptable Level | | | | f | Can specifically
fracture phenor
metallic materia | menon of | Can explain the phenomenon o materials. | e fractu
of meta | ire
Ilic | Cannot explain with an example of the fracture phenomenon of metallic materials. | | Accianad | nt 3 | le | Can specifically
effects of variou
material streng | us factors on | Can explain the various factors strength. | | | Cannot explain the effects of various factors on material strength. | | Assigned | Depart | ment Objec | ctives | | | | | | | Teaching | Method | | | | | | | | | Outline | | deepen und | erstanding for | microscopic struc
mechanical stude
nphasis on exper | ents and to be al | us facto
ole to e | ors on vai
expand ho | rious strength properties. To
orizons beyond specialty for electric | | Style | | A combinati
understandi | on of lectures, | experiments, and | d presentation/d | iscussi | on forma | ts will be used to deepen | | Notice | | Students are
course's cor
in classes ar
reports. | e expected to intent will amound the standard | ınt to 90 hours of | study in total. T
required for pre- | These h
-study | ours incl
/ review, | ng to the lecture content. This ude the learning time guaranteed and completing assignment | | Character | ristics o | • | ivision in Lea | | | | | | | ☐ Active L | earning | | ☐ Aided by IC | T | ☑ Applicable to a positive positiv | o Remo | ote Class | ☐ Instructor Professionally Experienced | | | | | | | | | | | | Course Pl | ian | T | | | | C1- | | | | | | | eme
roduction : Stre | ength and rigidity | , | | | sic concepts and examples about gidity of materials. | | | | 2nd Sta | tic strength (1) |) Sliding and plas | tic deformation | Can ex | | e sliding and plastic deformation of | | | | | tic strength (2) |) How to strength | nen metal | Can ex | | w to strengthen metal materials | | 3 | Brd | 4th Sta | itic strength (3) |) Types of fractur | es in metal | Can ex | kplain typ | pes of fractures in metal materials echanisms. | | | Duarter | | esentation (1) | | | Can ex | | causes of some examples of | | | | 6th Ter | nsile test (1) S
ds of materials | tress-strain diagr | rams for some | Can ex
diagra | cplain the | e properties of stress-strain
me kinds of materials. | | | | 7th Ter | nsile test (2) Br
terials | rittle fracture of n | otched | Can ex
fractu | cplain the | e effect of notch on brittle like tile materials. | | 2nd
Semeste
r | | 8th Fati | igue (1) Fatigu
gram | e test methods a | nd S-N | Can ex | kplain the | e basics of fatigue. | | | | | igue (2) Fatigi
pagation | ue process and cr | ack | | kplain the
gation. | e characteristics of fatigue crack | | | | 10th Hig | | strength and env | vironmental | Can ex | | ep deformation, creep fracture and | | | | 11th Fra | cture mechanic | CS | | Can ex | cplain the intensity | e stress fields at crack tips, and the factor. | | | lth
Quarter | 12th Sta | tistical propert | ies of material str | rength | Can ex
streng | | e statistical properties of material | | | | 13th Pre | esentation (2) | | | Can ex
destru | cplain the | e causes of some examples of idents. | | | | 14th Ber | nding test | | | Can ex | kplain the | e fully plastic bending moment. | | | | 15th Tor | sion test | | | Can ex | kplain the | e fully plastic torsional moment. | | | | 16th | | | | | | | | <u>Evaluatio</u> | n Metho | od and Wei | ght (%) | | | | | | | | | | | sentation/Discussi | ion | | Total | | | Subtotal | | - | 100 | | | | 100 | | | Basic Proficiency | 40 | 40 | |-------------------------|----|----| | Specialized Proficiency | 40 | 40 | | Cross Area Proficiency | 20 | 20 | | А | kashi Co | ollege | Year | 2024 | | C | Course
Title | Optoelectronics Devices | |---|---|--|--|--|--
--|---|--| | Course | Informa | tion | | 1 | | | | | | Course Co | ode | 6033 | | | Course Catego | ry | Specializ | ed / Elective | | Class Forr | mat | Lecture | | | Credits | | Academi | c Credit: 2 | | Departme | ent | Mechanio | cal and Electronic
ing | c System | Student Grade | | Adv. 2nd | i | | Term | | First Sen | nester | | Classes per We | eek | 2 | | | Textbook | | | | | | | | | | Teaching
Instructor | | SUYAMA | Taikei | | | | | | | | Objectiv | | · · · · · · · · · · · · · · · · · · · | | | | | | | 1) Can ex
the basis
2) Unders
display de | plain the to
for optical
stand the cevices and
enstruct an | pasics of qu
devices.
operating pr
can explain | rinciples and cha | racteristics of vari | ous light emitting | g devic | ces, photo | n optical waves and electrons as
sensitive devices, and solid-state
nology from one's field of | | Rubric | | | | | | | | | | | | | Ideal Level | | Standard Level | | | Unacceptable Level | | Achievem | ent 1 | | | nd can apply the
eristics of light,
hanics, and
rs. | Understand the characteristics mechanics, and semiconductor | of ligh
d | | Do not understand the basic characteristics of light, quantum mechanics, and semiconductors. | | Achievem | ent 2 | | Understand the between light electrons and problems. | waves and | Understand the between light velectrons. | | | Do not understand the interaction between light waves and electrons. | | Achievem | ent 3 | | and application devices such a | ne basic principles
ns of optical
as optical
.EDs, and lasers. | Understand the of optical wavegulasers. | es suc | h as | Do not understand the basic
principles of optical devices
such as optical waveguides,
LEDs, and lasers. | | | | | detail photose | s, optical fibers,
unication, optical
and medical
optical power | Understand ph
display devices
optical commu
measurement
applications, of
applications, et | s, optic
nicatio
and ma
ptical p | cal fibers,
on, optical
edical | Do not understand photosensitive and display devices, optical fibers, optical communication, optical measurement and medical applications, optical power applications, etc. | | | | tment Ob | jectives | | | | | | | Outline | g Metho | Optical e
engineer
a wide ra
advanced
second h | ing. It has helpe
ange of content.
d significantly. Ir
aalf will explain v | d diversify and im
Optical devices m
this course, the f | prove the performake up the core of
irst half will focutions used for options. | mance
devices
s on th
ical info | of electro
s within the
ne basics a | engineering, and electronics
onic engineering functions and has
nis, and this technology has
and theory of optical devices. The
transmission, optical recording, | | Style | | Students
The ove | s who miss 1/3 o
rall evaluation w | r more of classes | will not be eligibl
on periodic exar | le for e | ie minimu | m score for a pass will be 60%. | | Notice | | This cou
guarante
assignme
Students | urse's content wi
eed in classes and
ent reports. It is
who miss 1/3 o | ll amount to 90 ho
d the standard sel
recommended tha
r more of classes | ours of study in to
f-study time requal
at students have | otal. The state of | hese hour
or pre-stu
ered subje | s include the learning time
dy / review, and completing
cts related to electronic properties. | | Charact | eristics (| of Class / | Division in Le | earning | | | | Tostwisten Duefeesienelli. | | □ Active | Learning | | ☑ Aided by I | CT | ☑ Applicable t | o Rem | ote Class | ☐ Instructor Professionally
Experienced | | C | DI | | | | | | | | | Course | ridN
 | <u> </u> | Theme | | | Goala | | | | | | | Theme
Optical electronic | cs and optical dev | ices | Goals | | | | | | 1st | Optical electronic
characteristic ha
Telecommunicat
engineering, and | cs is a technology
s three sides:
ions engineering,
I light energy. Bas
n of optical device | whose
imaging
ed on this, | Optica
Under | al electron
rstand the | ics and optical devices
form of optical electronics. | | 1st
Semeste 1st
Quarter 2nd | | 2nd | reflection, interfection, inte | properties of ligh
erence, diffraction
seen learned so fa | , polarization, | Under | rstand the | fundamental properties of light. | | 3rd | | | Describe the bac
development, th
waves of matter
Schrödinger equ
make up the the | c.) that have been learned so far in physics, etc. sics of quantum mechanics escribe the background of quantum mechanics velopment, the dual nature of particles and aves of matter, the wave equation of the hrödinger equation, and wave functions, which ake up the theoretical background of quantum echanics required to understand the interaction | | | | basics of quantum mechanics. | | power matching of light propagation and bending lemission), power matching of light propagation loss, power matching conditions for light and bending loss, power matching conditions for | | | | | | | | | | | |--|----------------------|-------------|----------
--|---|--|---|-------------------------------------|------------------------------------|--| | Sh Describe the electrical properties of semiconductors, which form the basis of optical wave and electrons. Think about a method of quantum mechanical representation of the interaction between light waves and electrons. Think about a method of quantum mechanical representation of the interaction between light waves and electrons. Think about a method of quantum mechanical representation of the interaction between light according to the interaction between light waves and electrons. The proposal part that indicates the according to the interaction between light waves and electrons (electron transition and between light waves and electrons (electron transition and between light waves and electrons (electron transition and between light waves and electrons). The proposal changes in photon and electron density based on the analysis of the light week. Think about the polarization of the multi-level system, based on this. Photoelectric waveguides based on the analysis of the light week. Think about the polarization for the analysis of the light propagation, light gettering endities for electron the polarization and proposal pr | | | 4th | Materials absorb a
to interactions be
Think phenomeno | and emit light. The
tween electrons in
Togically about light | nis is mainly due
n substances. | junderstand light | absorption an | d emission in | | | waves and electrons. Think about a method of quantum mechanical Think about a method of quantum mechanical Think about a method of quantum theory of the interaction factor of a material (the real part that indicates the accumulation of energy and the imaginary part cemission) by the second-order system of approximation using a density matrix. Quantum theory of the interaction between light waves and electrons. Committed emission in presenting the percentage of temporal changes in photon and | | | 5th | Describe the elect semiconductors, v | rical properties o | f | | | erties of | | | waves and electrons (electron transition and stimulated emission). Perspecienting the Derive the rate equation proposed in the Derive the rate equation of the ministriction process from the proton and electron density based on the analysis of the light wave amplification process from the previous week. Think about the polarization of the multilevel system, based on this. Photoelectric waveguides Using mainly light approximation for the analysis of photoelectric waveguide. Stimulator waveguide mode, equivalent refractive index, containment coefficient, power matching of light propagation, all perspectives and buster angle and bending loss. power matching of light propagation and bending loss, power matching of light propagation and buster angle and bending loss. power matching of light propagation and bending loss, power matching of light propagation and bending loss. power matching of light propagation and bending loss, power matching of light propagation and bending loss. power matching of light propagation and bending loss, power matching of light propagation, and bending loss, power matching and bending loss, p | | | 6th | waves and electron Think about a me representation of and electrons. De material (the real accumulation of ethat represents all emission) by the second that the represents all emission by the second that represents all emission is all the represents representations are represented repres | ons thod of quantum the interaction be rive the polarizati part that indicate nergy and the im psorption and stir second-order syst | mechanical
etween light
ion factor of a
es the
laginary part
nulated
tem | | | | | | Using mainly light approximation for the analysis of photoelectric waveguide, describe topics such as an optical waveguide's basic properties (total reflection, waveguide mode, equivalent refractive index, containment coefficient, power matchin of the propagation and bending of light propagation, mode matching conditions, and bluster angle and bending loss, power matching conditions for light propagation, mode matching conditions, and bluster angle and bending loss. Periodic structures and light concentration and projection Explain periodic structures and photonic crystals. Understand light concentration and projection. Periodic structures and photonic crystals. Understand projection Explain periodic structures and photonic crystals, and photonic crystals, and light concentration and projection. Potical simulator Light emitting diodes Describe the structure, production methods, and Describe the structure, production methods, and Describe the structure problems. Part of the important light emitting devices. Explain its light emitting characteristics and features and think about its current problems. Semiconductor lasers Explain the properties of semiconductor lasers as a light sources and determine an oscillation threshold, optical output, oscillation wavelength, amplification gain, and so on. Describe the structure, type, emission characteristics, etc. of semiconductor lasers (LD). Photosensitive and display devices Describe the structure, properties, and features of photosensitive devices such as photodetectors, photodiodes, solar cells, etc. Describe display devices of photosensitive devices such as photodetectors, photodiodes, solar cells, etc. Describe prolical fiber and device bonding, optical circuit elements, optical ploarizers, etc. Optical fiber lines and optical components Describe optical fiber and device bonding, optical circuit elements, optical ploarizers, etc. Final exam Evaluation Method and Weight (%) Examination Presentation Presentation Presentation Presentation Presentation Prese | | | 7th | waves and electrostimulated emission Derive the rate expercentage of ten electron density by wave amplification week. Think about | ons (electron tran
on)
quation represent
nporal changes in
ased on the anal
n process from th
t the polarization | sition and ing the photon and ysis of the light previous | | | | | | Periodic structures and light concentration and projection is plain periodic structures and photonic crystals. Understand periodic structures and photonic crystals. Understand light concentration and projection. 10th Optical simulator Light emitting diodes Describe the structure, production methods, and materials of light emitting diodes (LEDs), one of the important characteristics and features and think about its current problems. Semiconductor lasers Explain the properties of semiconductor lasers as a light sources and determine an oscillation threshold, optical output, oscillation wavelength, amplification gain, and so on. Describe the structure, type, emission characteristics, etc. of semiconductor lasers (LD). Photosensitive and display devices Describe the structure, type, emission characteristics, etc. of photoensitive devices outpass photodetectors, photodiodes, solar cells, etc. 13th Optical fiber lines and optical components Describe optical fiber and device bonding, optical circuit elements, optical polarizers, etc. 15th Applications of optical devices 16th Final exam Evaluation Method and Weight (%)
Examination Presentation Mutual Evaluations between students Subtotal 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 8th | Using mainly light of photoelectric was an optical waw reflection, waveguindex, containmer light propagation, power matching closs, power match propagation, mod | approximation for aveguide, describeguide's basic pro-
lide mode, equivant coefficient, powallight gathering a fight propagatic onditions for matching conditions for matching condi | pe topics such operties (total alent refractive wer matching of and bending r light | Using mainly light approximation for the analysis of photoelectric waveguide, understand topics such as an optical waveguide's basic properties (total reflection, waveguide mode, equivalent refractive index, containment coefficient, power matching of light propagation, light gathering and emission), power matching of light propagation and bending loss, power matching conditions for light propagation, mode matching conditions, and | | | | | Light emitting diodes Describe the structure, production methods, and materials of light emitting diodes (LEDs), one of the important light emitting devices. Explain its light emitting draaracteristics and features and think about its current problems. Semiconductor lasers Explain the properties of semiconductor lasers as a light sources and determine an oscillation threshold, optical output, oscillation wavelength, amplification gain, and so on. Describe the structure, type, emission characteristics, etc. of semiconductor lasers (LD). Photosensitive and display devices Describe the structure, properties, and features of photosensitive devices such as photodetectors, photodiodes, solar cells, etc. Describe display devices with a focus on LCDs. Optical fiber lines and optical components Describe optical fiber and device bonding, optical circuit elements, optical polarizers, etc. 15th Applications of optical devices Describe optical fiber and device bonding, optical circuit elements, optical polarizers, etc. 15th Applications of optical devices Evaluation Method and Weight (%) Examination Presentation Mutual Evaluations Describe display Evaluation Behavior Subtotal 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 9th | Periodic structure
projection
Explain periodic st | s and light conce | otonic crystals. | Understand period
concentration and
and photonic cry | odic structures | , light
periodic structures | | | Describe the structure, production methods, and materials of light emitting diodes (LEDs), one of the important light emitting devices. Explain its light emitting characteristics and features and think about its current problems. Semiconductor lasers Explain the properties of semiconductor lasers as a light sources and determine an oscillation wavelength, amplification gain, and so on. Describe the structure, type, emission characteristics, etc. of semiconductor lasers (LD). Photosensitive and display devices Describe the structure, properties, and features of photosensitive devices such as photodetectors, photodiodes, solar cells, etc. Describe display devices with a focus on LCDs. Optical fiber lines and optical components Describe optical fiber and device bonding, optical circuit elements, optical polarizers, etc. 15th Applications of optical devices Understand the principles of light emitting diodes (LDC) and lines and optical optical services. In the principles of semiconductor lasers. Understand the principles of semiconductor lasers as a light sources and described the principles of semiconductor lasers. Understand | | | 10th | | | , ₁ , . <u>J</u> | i | to use the Opt | tical simulator | | | Explain the properties of semiconductor lasers as a light sources and determine an oscillation wavelength, amplification gain, and so on. Describe the structure, type, emission characteristics, etc. of semiconductor lasers (LD). Photosensitive and display devices Describe the structure, type, emission characteristics, etc. of semiconductor lasers (LD). Photosensitive devices such as photodetectors, photodiodes, solar cells, etc. Describe display devices with a focus on LCDs. 13th | | | 11th | Describe the structure materials of light the important light light emitting chains | cture, production
emitting diodes (
at emitting device
racteristics and fe | s. Explain its | Understand the p | principles of lig | ht emitting diodes. | | | Photosensitive and display devices Describe the structure, properties, and features of photosensitive devices such as photodetectors, photodiodes, solar cells, etc. Describe display devices with a focus on LCDs. 14th Optical fiber lines and optical components Describe optical fiber and device bonding, optical circuit elements, optical polarizers, etc. 15th Applications of optical devices 16th Final exam Final exam Evaluation Method and Weight (%) Examination Presentation Mutual Evaluations between students Subtotal 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | - 12th | Explain the prope
a light sources an
threshold, optical
amplification gain
structure, type, el | rties of semicond
d determine an o
output, oscillation
, and so on. Desc
mission character | scillation
n wavelength,
cribe the | | principles of se | emiconductor | | | 14th Describe optical fiber and device bonding, optical optical circuit elements, optical polarizers, etc. 15th Applications of optical devices Understand the applications of optical devices. 16th Final exam Final exam | | | 13th | Photosensitive and Describe the structure photosensitive desphotodiodes, sola | d display devices
cture, properties,
vices such as pho
r cells, etc. Descr | todetectors, | features of photodetectors, photodiodes, solar | | | | | Total | | | 14th | Describe optical fi | ber and device be | onding, optical | Understand optic
optical circuit ele | cal fiber and de
ements, optical | evice bonding,
polarizers, etc. | | | Evaluation Method and Weight (%) Examination Presentation Wutual Evaluations between students Subtotal 100 0 0 0 0 0 0 0 0 100 Basic Proficiency 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | tical devices | | | applications of | optical devices. | | | Examination Presentation Mutual Evaluations between students Behavior Portfolio Exercise Total Subtotal 100 0 0 0 0 0 100 Basic Proficiency 0 0 0 0 0 0 0 Specialized Proficiency 100 0 0 0 0 0 100 Cross Area 0 0 0 0 0 0 0 0 | | | | | | | Final exam | | | | | Examination Presentation Evaluations between students Behavior Portfolio Exercise Total Subtotal 100 0 0 0 0 0 100 Basic Proficiency 0 0 0 0 0 0 0 Specialized Proficiency 100 0 0 0 0 0 100 Cross Area 0 0 0 0 0 0 0 0 | ∟valuatio | on Me | tnod and | vveignt (%) | Mutual | Τ | | | | | | Basic Proficiency 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 100 | | Examination | | Presentation | Evaluations between | Behavior | Portfolio | Exercise | Total | | | Proficiency 0 0 0 0 0 0 Specialized Proficiency 100 0 0 0 0 100 Cross Area 0 0 0 0 0 0 0 | | : | 100 | 0 | 0 | 0 | 0 | 0 | 100 | | | Proficiency 100 0 0 0 100 Cross Area 0 0 0 0 0 0 0 0 | Basic
Proficiency | , (|) | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 100 | 0 | 0 | 0 | 0 | 0 | 100 | | | <u> </u> | | |) | 0 | 0 | 0 | 0 | 0 | 0 | | | А | kashi Co | ollege | Year | 2024 | | | ourse
Fitle | Algorithms | | |--|--|---|---|---|--
--|---|---|--| | Course 1 | Informa | tion | | | | | itic | | | | Course Co | | 6034 | | | Course Categor | ry | Specialize | d / Elective | | | Class Forr | nat | Lecture | | | Credits | | Academic | Credit: 2 | | | Departme | nt | Mechanic
Engineer | al and Electronic | System | Student Grade | | Adv. 2nd | | | | Term | | Second S | | | Classes per We | eek | 2 | | | | Textbook
Teaching | | | | | | | | | | | Instructor | | HAMADA | Yukihiro | | | | | | | | Course | | | | | | | | | | | [2] Can
Underst
[3] Algo
[4] Algo
[5] Algo
[6] Algo | formulate and the all prithms the prithms to prithms for the prithms for prithms for the prith | real proble
gorithms lise
at constitute
explore gra
solving sho
solving ma | ms on graphs.
Ited below and the
a minimum spa | em | | | | | | | Rubric | | | | | | | | | | | | Ideal Level Standard Level Unacceptable Level | | | | | | | | | | Achievem | ent 1 | | Can accurately computational orders, lists, s graphs, and tr | complexity,
tacks, queues, | Can explain cor
complexity, ord
queues, graphs | ders, list | ts, stacks, | Cannot explain computational complexity, orders, lists, stacks, queues, graphs, and trees. | | | Achievem | ent 2 | | Can accurately problem for de meeting dates committees. | etermining the | Can formulate a
determining the
of various comi | e meeti | ng dates | Cannot formulate a problem for determining the meeting dates of various committees. | | | Achievem | ent 3 | | Can accurately and Prim's alg time complexi | y explain Kruskal's
orithms and their
ties. | Can explain Kruskal's and Prim's algorithms and their time complexities. | | | Cannot explain Kruskal's and Prim's algorithms and their time complexities. | | | Achievem | ent 4 | | | | Can explain depth-first search and breadth-first search algorithms and their time complexities. | | | Cannot explain depth-first search and breadth-first search algorithms and their time complexities. | | | Achievem | ent 5 | | Can accurately
Dijkstra's, Bell
Floyd's algorit
time complexi | lman-Ford, and
hms and their | Can explain Dijkstra's, Bellmar
Ford, and Floyd's algorithms
and their time complexities. | | | Cannot explain Dijkstra's,
Bellman-Ford, and Floyd's
algorithms and their time
complexities. | | | Achievem | ent 6 | | | | nds-Karp, and relabel algorithms and | | | Cannot explain the Ford-
Fulkerson, Edmonds-Karp, and
Push-relabel algorithms and
their time complexities. | | | Achievem | ent 7 | | Can accurately
Knuth-Morris-
Moore algorith
complexities. | Pratt and Boyer- | Can explain the Knuth-Morris-
Pratt and Boyer-Moore
algorithms and their time
complexities. | | | Cannot explain the Knuth-
Morris-Pratt and Boyer-Moore
algorithms and their time
complexities. | | | Assigne | d Depar | tment Ob | jectives | | | | | | | | Teachin | g Metho | | | | | | | | | | Outline | | Graphs a
"relations
problem
Strings a | re defined as an
ships" or "conned
as a graph probl
re one of the mo | ctions" between "the
em and get the so | rtex set and edg
nings" in real-wo
lution for it by so
of data handled | ge set, a
orld prol
olving it | and are oft
blems. It i
on a gran | ns.
en used to represent the
s possible to formulate a real
oh.
tudents will learn about efficient | | | Style | | | | ecture style. All slid | | | | | | | Notice | | guarante
assignme
taking th | ed in classes and
ent reports. It is
is course. | d the standard self | -study time requ
students to have | uired for
e maste | r pre-study
ered progra | nclude the learning time
y / review, and completing
amming in C language before | | | Charact | eristics o | | Division in Le | | | | | | | | ☐ Active | Learning | | ☑ Aided by IO | | | o Remo | te Class | ☐ Instructor Professionally
Experienced | | | Course I | Plan | | | | | | | | | | | | - | Theme | | | Goals | | | | | | | 1st I | Basic knowledge | of algorithms | | Can ex | plain algor
exity, and | rithms, computational | | | | | 2nd I | Basic data struct | ure | | | | stacks, queues, and heaps. | | | 2nd
Semeste
r | 3rd
Quarter | 2rd I | | e real-world proble | ems as graph Can explain graphs and trees. Can for problem for determining the meeting | | | hs and trees. Can formulate a | | | | | 4th (| Algorithms that or tree algorithm 1 | constitute a minim
/2 | um spanning | Can explain Kruskal's algorithm, set operation algorithms and their time complexities. | | | | | | | 5th | Algorithms that co | onstitute a minim | num spanning | Can explain Prir complexity. | n's algorithm and | d its time | | |--------------------------|-----------------------------|-------------|--|--|-----------------|---|--------------------------------------|-------------------------------|--| | | | 6th | Algorithms to exp | lore graphs | | | th-first search and their time | | | | | | 7th | Algorithms for sol 1/2 | ving shortest pat | th problems | Can explain Dijkstra's algorithm for finding the shortest path from a single vertex and its time complexity. | | | | | | | 8th | Midterm exam
The exam's scope
6. | will be content t | from weeks 1 to | | | | | | | | 9th | Algorithms for sol 2/2 | ving shortest pat | th problems | Can explain the Bellman-Ford algorithm for the shortest path from a single vertex and the Floyd algorithm for the shortest path between all vertices. Can also explain their time complexities. | | | | | | | 10th | Algorithms for sol 1/2 | ving maximum f | low problems | Can explain the
Karp algorithms | Ford-Fulkerson a
and their time o | and Edmonds-
complexities. | | | | | 11th | Algorithms for sol 2/2 | ving maximum f | low problems | Can explain the Push-relabel algorithm and its time complexity. | | | | | | 4th
Quarte | r 12th | Algorithms for str | ing pattern matc | hing 1/3 | Can explain the its time complex | | att algorithm and | | | | | 13th | Algorithms for str | ing pattern matc | hing 2/3 | Can explain the (acceleration ide | Boyer-Moore algea 1) and its time | orithm
complexity. | | | | | 14th | Algorithms for string pattern matching 3/3 | | | Can explain the (acceleration ide | Boyer-Moore algea 2) and its time | orithm
complexity. | | | | | 15th | From algorithm th | neory to engineer | ring | Can explain "alg
bridges the gap
reality. | orithm engineer
between algoritl | ing," which
nm theory and | | | | | 16th | Final exam | | | | | | | | Evaluati | on Me | thod and | Weight (%) | | | | | | | | | I | Examination | Presentation | Mutual
Evaluations
between
students | Behavior | Portfolio | Other | Total | | | Subtotal | | 100 | 0 | 0 | 0 | 0 | 0 | 100 | | | Basic
Proficienc | y | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Specialized 100 Proficiency | 100 | 0 | 0 | 0 | 0 | 0 | 100 | | | Cross Are
Proficience | oss Area | | 0 | 0 | 0 | 0 | 0 | 0 | | | Akashi College | | Year 2024 | | Cour | | Advanced Electronic Circuit | | | | |-------------------------|---|--|--|--|---|---
---|--|--| | Course | Informa | tion | | | | | | | | | Course Co | ode | 6035 | | | Course Categor | y Spe | ecialized | d / Elective | | | Class Forr | mat | Lecture | | | Credits | Aca | demic | Credit: 2 | | | Departme | ent | Mechanica
 Engineerir | al and Electronic | System | Student Grade | Adv | /. 2nd | | | | Term | | First Seme | | | Classes per We | ek 2 | | | | | Textbook | | | | | | | | | | | Teaching
Instructor | | TERASAW | 'A Shinichi | | | | | | | | | Objectiv | | 7 Similarii | | | | | | | | This cours
understan | se will tead
nd the CMO
nd the road
n taken in | ch VLSI devid
OS logic circu | uit, apply it to co | mputer and contro | ol circuits, learn | the feature | es of va | ne objective is to correctly
rious memory LSIs, and
e challenges and measures that
mption and reliability | | | Rubric | | | | | | | | | | | | | | Ideal Level | | Standard Level | | | Unacceptable Level | | | Achievem | ent 1 | | Fully understal and operation techniques. | nd circuit design
verification | Understand circle operation verification verification verification verifications. | | and | Do not understand circuit design and operation verification techniques. | | | Achievem | ent 2 | | Fully understar
for low power
high speed. | nd technologies
consumption and | Understand tec
power consump
speed. | hnologies (
otion and h | for low
nigh | Do not understand technologies for low power consumption and high speed. | | | Achievem | ent 3 | | Fully understar
memory circuit
such as SRAM,
Flash. | | Understand hig
memory circuit
such as SRAM,
Flash. | technologi | ies
d | Do not understand high-density
memory circuit technologies
such as SRAM, DRAM, and
Flash. | | | Assigne | d Depar | tment Obj | ectives | | | | | | | | Teachin | g Metho | d | | | | | | | | | Outline | | consumpt
high-perfo
In this cou
performar | ion, and higher
ormance design
urse, lessons wil
nce design electi | integration. The co
techniques for ach
Il be conducted in a | ourse will lecture
lieving them.
a lecture style fo | e on circuit
ormat. Stud | and ar
dents w | ner speed, lower power chitecture technologies regarding will be introduced to the high-
ch practical experience in | | | Style | | exams, ar
1) Unders
2) Unders | nd evaluation wi
stand circuit desi
stand technologi | ecture and exercis
Il be based on the
ign and operationa
es for low power c
ty memory circuit | submitted assig
I verification tec
onsumption and | nment.
hnologies.
high spee | d. | ers 1) to 3). There will be no | | | Notice | | This cours
guarantee
assignmen | se's content will
ed in classes and
nt reports. | amount to 90 hou | rs of study in to
study time requ | tal. These
iired for pr | hours ii
e-study | nclude the learning time // review, and completing | | | Charact | eristics (| • | Division in Le | | viii riot be eligible | e ioi evalu | ation. | | | | | | or Class / I | | | | - D | 21 | ☐ Instructor Professionally | | | ☐ Active | Learning | | ☑ Aided by IC | , l
 | ☑ Applicable to | o Remote (| Liass | Experienced | | | | | | | | | | | | | | Course | Plan | I I- | -1 | | 1 | <u> </u> | | | | | | | 1st E | erformance VLS | re overview for Ad | · | performan
Understan | ce VLS
d the le | ecture overview for Advanced | | | | | n
2nd E | MOS/pMOS tran
xplain nMOS/pM | nsistors and CMOS
10S transistor and | inverters nMOS/I
CMOS inverter Unders | | ostronic Circuits. OS/pMOS transistors and CMOS inverters derstand nMOS/pMOS transistor and CMOS | | | | | | | | | | | | | | | | | 2rd C | peration.
MOS logic circui
xplain the vario | | | inverter op
CMOS logi | oeratior
c circui | ı. | | | 1st | | 3rd C
4th E | MOS logic circui
xplain the varion
combinational cin
xplain the comb | its
us CMOS logic circ
cuits using CMOS
inational circuits tl | uits. | inverter op
CMOS logi
Understan
Combinati
Understan | peration
c circuind CMOS
onal cirud the c | ts S logic circuits. cuits using CMOS ombinational circuits that are | | | 1st
Semeste
r | 1st
Quarter | 3rd C
4th E
5th C | MOS logic circui
xplain the varior
combinational cir
xplain the comb
omposed of CMC | its us CMOS logic circ rcuits using CMOS inational circuits to OS logic circuits. uential circuits ential circuits that | uits.
hat are | inverter op
CMOS logi
Understan
Combinati
Understan
composed
CMOS-bas
Understan | c circui
d CMOS
onal cir
d the c
of CMOS
ed sequent | ts
S logic circuits.
cuits using CMOS | | | | | 3rd E 4th E c 5th E 6th E | MOS logic circui
xplain the varior
xplain the comb
xplain the comb
omposed of CMC
MOS-based seq
xplain the seque
f CMOS logic cir
SI manufacturin
xplain topics su | its us CMOS logic circ rcuits using CMOS inational circuits tl OS logic circuits. uential circuits ential circuits that cuits. | uits. hat are are composed | inverter of
CMOS logi
Understan
Combinati
Understan
composed
CMOS-bas
Understan
LSI manuf
Understan | c circui
d CMOS
onal cir
d the c
of CMOS
ed sequent
d the s
of CMOS
facturin
d topics | ts S logic circuits. Cuits using CMOS Combinational circuits that are DS logic circuits. Luential circuits Luential circuits that are DS logic circuits. Luential circuits that are Lue | | | | | 3rd CE 4th CC 5th CC 6th CO 7th E | MOS logic circui xplain the variou xplain the variou xplain the combomposed of CMC MOS-based sequal in the seque f CMOS logic circus I manufacturin xplain topics successive film format LSI design xplain functiona | its us CMOS logic circ reuits using CMOS inational circuits to OS logic circuits. uential circuits that cuits. ug
process ch as silicon substr | uits. hat are are composed rates, gate ion. | inverter of
CMOS logi
Understan
Combinati
Understan
composed
CMOS-bas
Understan
composed
LSI manuf
Understan
oxide film
VLSI desig
Understan | c circuid CMO: onal circuid the cof CMC ed sequent the cof CMC ed sequent the cof CMC | ts S logic circuits. cuits using CMOS ombinational circuits that are OS logic circuits. uential circuits equential circuits that are OS logic circuits. g process | | | | | 9th E | Non-volatile memo
Explain non-volatile
and operation. | | configuration | Non-volatile memory circuits Understand non-volatile memory circuit configuration and operation. | | | | |----------------------------|--|----------|---|------------------------------------|-----------------------|---|---|-------|--| | | | | Circuit design exer
Explain circuit inpu | | ≣ 1 | Circuit design exercises using SPICE 1
Understand circuit inputs using SPICE. | | | | | | | 11th E | Circuit design exercises using SPICE 2 Explain circuit inputs and operation verification using SPICE. | | | Circuit design exercises using SPICE 2
Understand circuit inputs and operation
verification using SPICE. | | | | | 2nd | | 12th | Circuit design using
submission 1
Solve the problems
operation verificati | s regarding circui | | Circuit design using SPICE; Assignment submission 1 Solve the problems regarding circuit inputs and operation verification using SPICE. | | | | | Qua | Quarter Circuit design using SPICE; Assignment submission 2 Solve and submit the problems regarding circuinputs and operation verification using SPICE. | | | | | Circuit design using SPICE; Assignment submission 2 Solve the problems regarding circuit inputs and operation verification using SPICE. | | | | | | | | Testing and reliabi
Explain coverage a | | stability. | Testing and reliability design
Understand coverage and design for testability. | | | | | | | 15th S | Summary and futu
Explain topics such
sensor nodes, and
rends in VLSI tech | as more than M
other future dev | oore, IoT
elopment | Summary and future trends Understand topics such as more than Moore, IoT sensor nodes and other future development trends in VLSI technology. | | | | | | | 16th N | No final exam | | | | | | | | Evaluation | Meth | od and W | eight (%) | | | | | | | | | Ass | ignments | | | | | | Total | | | Subtotal | 100 | | 0 | 0 | 0 | 0 | 0 | 100 | | | Basic
Proficiency | o O | | 0 | 0 | 0 | 0 | 0 | 0 | | | Specialized
Proficiency | 100 |) | 0 | 0 | 0 | 0 | 0 | 100 | | | Cross Area
Proficiency | 0 | | 0 | 0 | О | 0 | 0 | 0 | | | Akashi College Course Information | | Year | Year 2024 | | Course
Title | Mathematical Informatics | | | | |---|---|---|--|--|---|---|---|--|--| | Course | Informa | tion | | | | | | | | | Course C | | 6036 | | | Course Category | / Specializ | ed / Elective | | | | Class For | mat | Lecture | l lel i : | | Credits | Academi | c Credit: 2 | | | | Departme | ent | Mechanica
 Engineerin | l and Electronic
g | System | Student Grade | Adv. 2nd | I | | | | Term | | First Seme | ster | | Classes per Wee | ek 2 | | | | | Textbook | and/or
Materials | Materials v | vritten in Englis | h are distributed. | | | | | | | Instructo | | HAMADA Y |
′ukihiro | | | | | | | | [1] Can r
[2] Can e
[3] Can e
[4] Can e
[5] Can e | explain the
explain the
explain the | nical book wr
fundamentals | s of algorithms.
s of trees. | | | | | | | | Rubric | | | l | | lo | | T., | | | | | | | Ideal Level Can read a tec | hnical book | Standard Level Can read a tech | nical book | Unacceptable Level | | | | Achieven | nent 1 | | | ish with little use | written in Englis
dictionary. | | Cannot read a technical book written in English. | | | | Achievem | nent 2 | | graphs sufficie | | graphs. | | fundamentals of graphs. | | | | Achieven | nent 3 | | of algorithms s | | Can explain the algorithms. | | fundamentals of algorithms. | | | | Achieven | nent 4 | | Can explain the of trees sufficient | ne fundamentals
ently. | Can explain the fundamentals of trees. | | Cannot explain the fundamentals of trees. | | | | Achievem | nent 5 | | Can explain gr
algorithms suff | raph traversal
ficiently. | Can explain grapal algorithms. | oh traversal | Cannot explain graph traversal algorithms. | | | | Assigne | ed Depar | tment Obje | ectives | | | | | | | | Teachir | ng Metho | od | | | | | | | | | Outline | | _ | | | | _ | ook written in English.
Japanese alternatively by teacher | | | | This cours
guarantee
assignme
Notice To achiev
(1) Read | | | e's content will
d in classes and
it reports.
these goals, st
everal pages of
wo assignment | amount to 90 hou
the standard self-
tudents are require
the technical boo
reports. | rs of study in tota
-study time requi
ed to self-study o
k before each cla | al. These hours
red for pre-stu
utside of classe
ss. | | | | | Charact | torictics | | vno miss 1/3 or
Division in Le | more of classes v | viii not be eligible | for evaluation | | | | | | Learning | OI Class / L | ☐ Aided by IC | | ☑ Applicable to | Remote Class | ☐ Instructor Professionally Experienced | | | | Course | Dlan | | | | | | | | | | Course | Pian | Т | neme | | | Goals | | | | | | | | | | (| Can explain the definition of a graph. Also, can | | | | | | | 1st W | hat is a graph | | (| explain what a graph models. | | | | | | | 2nd Th | ne degree of a v | vertex, isomorphic | vertex and isomor | | | | | | | | 3rd Su | ubgraphs and de | egree sequences | | degree sequenc | | | | | | 1st
Quarter | 4th Co | onnected graphs | s, cut vertices and | l bridges | Can explain thin
cut vertices and | gs related to connected graphs,
bridges. | | | | | Quarter | 5th Sp | pecial graphs | | (| Can explain cor
and hypercubes | nplete graphs, bipartite graphs
s. | | | | | | 6th Di | graphs | | | | ngs related to digraphs. | | | | 1st
Semeste | | 7th Al | gorithmic comp | lexity | | Can explain alg
notation. | orithmic complexity and order | | | | r | | 8th Se | earch algorithms | s and sorting algo | rithms (| Can explain the
oubblesort algo | binary search algorithm and rithm. | | | | | | 9th In | troducing NP-co | ompleteness | (| Can explain NP | -completeness. | | | | | | | reedy algorithm
omputer | s and representing | g graphs in a | Can explain gre
the adjacency r
ist of a graph | edy algorithms. Also, can explain
natrix of a graph, the adjacency
stack and queue. | | | | | 2nd | | operties of tree | S | (| Can explain the | fundamental properties of trees. | | | | | Quarter | H + + + + + + + + + + + + + + + + + + + | ooted trees | | | · · · · · · · · · · · · · · · · · · · | ngs related to rooted trees. | | | | | | | epth-first search | 1 | | Can explain the depth-first search algorithm. | | | | | | | | | | 17 | Can explain an algorithm that finds the blocks of graph. | | | | | | | | nding Blocks
readth-first sear | | 9 | graph. | Breadth-first search algorithm. | | | | | 16th | No final exam | | | | | | | | | | |----------------------------------|-----------------------------------|---------------|--|----------|-----------|-------|-------|--|--|--|--| | Evaluation Method and Weight (%) | | | | | | | | | | | | | | Explanation when reading in turns | Report | Mutual
Evaluations
between
students | Behavior | Portfolio | Other | Total | | | | | | Subtotal | 60 | 40 | 0 | 0 | 0 | 0 | 100 | | | | | | Basic
Proficiency | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Specialized
Proficiency | 60 | 40 | 0 | 0 | 0 | 0 | 100 | | | | | | Cross Area
Proficiency | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Akashi College | | | Year | 2024 | | | ourse
Title | Optimization Design | | | |--
--|--|---|--|---|--
--|--|--|--| | Informat | ion | | | | | | | | | | | | 6037 | | | | Course Catego | rv | y Specialized / Elective | | | | | | Lecture | | | | | , | Academic Credit: 2 | | | | | ent | Mechani | | and Electronic S | System | Student Grade | | Adv. 2nd | | | | | | Second | Sem | ester | | Classes per We | eek | 2 | | | | | and/or
Materials | | | | | | | | | | | | • | SHI Fen | ghui | | | | | | | | | | Obiective | es | | | | | | | | | | | Understand and learn about the knowledge and methods for optimization and optimal design. Understand and can calculate basic mathematical formulas for linear and nonlinear programming optimization techniques. Understand the concepts and mathematical expressions of multi-objective optimization. Can explain and practice the principles of optimal design for genetic algorithms. Can create the optimal design for a helical gear reducer as an example of optimal design, and apply the optimization. | Ic | deal Level | | Standard Level | | | Unacceptable Level | | | | ent 1 | | U
al
m | Inderstand and bout the knownethods for opt | ledge and | Understand and
knowledge and | d learn
I metho | ds for | Do not understand and learn about the knowledge and | | | | ent 2 | | U
ca
m
lir
pi | Inderstand and alculate the ba nathematical for near and nonling or gramming o | sic
ormulas for
near | basic mathema
linear and nonl | itical fo
inear | rmulas for | Do not understand and cannot | | | | ent 3 | | aı | nd mathematic | mathematical e | thematical expressions of | | Do not understand the concepts
and mathematical expressions
of multi-objective optimization | | | | | | | g | genetic algorithms and genetic algorithm | | nms and | | Fully understand the idea of genetic algorithms and mathematical expressions | | | | | | | O | ptimal design f | nd calculate the
for a helical gear | Can program and calculate the optimal design for a helical gear reducer | | ulate the
elical gear | Can program and calculate the optimal design for a helical gear reducer | | | | d Depart | ment Ol | oiec | tives | | | | | | | | | | | - , | | | | | | | | | | <u> </u> | Optimize actively As compain the full optimize | used
outer
iture
ition | d in a variety ors continue to ors. In this could design and op | f fields in respons
develop, the imporse, students will
timization technic | se to the deman
ortance of optim
learn about the
ques. They will a | d for hi
ization
concep
also lea | igher perfo
and optim
ots and pro
orn specific | ormance in mechanical systems.
nal design is expected to increase
ocesses of optimization and | | | | | 1 | | • | - | | | | ate. | | | | | This cou
guarante
assignm | rse's
eed i | s content will a
in classes and
reports. | mount to 90 hou
the standard self- | rs of study in to
study time requ | tal. The
uired fo | ese hours
r pre-stud | include the learning time | | | | eristics c | of Class / | ν Div | vision in Lea | rning | | | | | | | | Learning | • | | Aided by ICT | Γ | ☑ Applicable to a positive positiv | o Remo | ote Class | ☐ Instructor Professionally
Experienced | | | | | | | | | | | | | | | | Plan | | | | | | | | | | | | | | The | me | | | Goals | | | | | | | 1st | Cou | rse guidance | | | | | rse content in accordance with the | | | | | 2nd | Opti | imization conce | epts and terminol | ogy | Explair
optimiz
and op | n concepts
zation thro
ptimization | s, terminology, and techniques of
ough examples of optimal design,
and optimal design problems. | | | | 3rd
Quarter | 3rd | (Mat
Lear | tlab)
rn the basic on | erations of Matlal | o/Simulink and | | | LAB/Simulink and Optimization | | | | - | 4th | Line | ear programmii | ng optimization (| 1) | An out | line of line
ms and fo | ear programming optimization rmulation methods. | | | | | 5th | Line | ear programmii | ng optimization (2 | 2) | · | | and examples of its application. | | | | | | | <u> </u> | | | Example applications of linear programming methods. Linear programming optimization using Matlab's | | | | | | | Information de mat and/or Materials objective stand and stand and stand the objective explain and eate the objective | Information ode 6037 mat Lecture ont Mechani Enginee Second and/or Materials SHI Fen Objectives stand and learn aboustand and can calculation stand the concepts applain and practice the eate the optimal des ent 1 ent 2 ent 3 d Department Of g Method Optimization and practice the optimal des compliance of the concepts applain and practice the eate the optimal des ent 1 ent 2 ent 3 d Department Of g Method Optimization actively As compliant the function of functio | Information ode 6037 mat Lecture Ent Engineering Second Sem and/or Materials SHI Fenghui Objectives stand and learn about th stand and can calculate th stand and can calculate th stand the concepts and r xplain and practice the preate the optimal design ent 1 | Information Infor | Information de | Information Information Index | Information Jode 6037 Course Category mat Lecture Credits Mechanical and Electronic System Student Grade Second Semester Classes per Week and/or Materials Stand and learn about the knowledge and methods for optimization and optimisation and concepts and mathematical formulas for linear and nonlinear postand and concepts and mathematical expressions of multi-objective optimization and optimisation for linear and nonlinear programming optimisation techniques. Pully understand the concepts and mathematical expressions of multi-objective optimisation and mathematical expressions. Can program and calculate the optimisation and mathematical expressions of multi-objective optimisation and mathematical expressions. Can program and calculate the
optimisation enablematical expressions. Can program and calculate the optimisation (which covers a wide range of fields) and optimisation externiques. Dy mathematical expressions of mathematical expressions of multi-objective optimisation in the future. In this course, students will learn about the concept optimization expressions of mathematical expressions. Classes will be held in a lecture style. There will be assignments as This course's content will amount to 90 hours of study in total. This guaranteed in classes and the standard self-study time required for assignment reports. Students who miss 1/3 or more of classes will not be eligible for expressions of Classes will be held in a lecture style. There will be | Information Infor | | | | An overview of non-linear optimization problems and optimization techniques. Explain application examples of nonlinear programming optimization (2) 8th (3) 8th Nonlinear programming optimization (2) 8th Nonlinear programming optimization (3) Report 2: Multi-objective optimization of new bus particular optimization techniques and pear SUNT, linear minimization techniques and pear SUNT, linear minimization techniques, and Powell's conjugation in the exercise. 12th Report 2: Optimal designs for helical gear reducers (2) 12th Report 2: Optimal designs for helical gear reducers (3) 13th Report 2: Optimal designs for helical gear reducers. 13th Report 2: Optimal designs for helical gear reducers. 14th Report 2: Optimal designs for helical gear reducers (3) 15th Summary and evaluation Summarize and review the content learned on this course. 15th Final exam 15th | | | | | | | | | |---|-----------|-------------|----------|--|---------------|--|----|--| | Sth Nonlinear programming optimization (2) preprocessing, optimization calculation programs, and examination of optimization results. Genetic algorithms (GA) Learn an overview for genetic algorithms and the contents of an optimal solution search program. Take design examples and compare them with other optimization techniques and learn SUMT, linear minimization techniques, and Powell's conjugate direction method. Take application examples to learn how to do multi-objective optimization of new bus routes (1) In the Report 1: Multi-objective optimization of new bus routes (2) In the Report 2: Optimal designs for helical gear reducers (1) In the Report 2: Optimal designs for helical gear reducers (2) In the Report 2: Optimal designs for helical gear reducer. In the Report 2: Optimal designs for helical gear reducer. In the Report 2: Optimal designs for helical gear reducer. In the Report 2: Optimal designs for helical gear reducer. In the Report 2: Optimal designs for helical gear reducer. In the Report 2: Optimal designs for helical gear reducer. In the Report 2: Optimal designs for helical gear reducer. In the Report 2: Optimal designs for helical gear reducer. In the Report 2: Optimal designs for helical gear reducer. In the Report 2: Optimal designs for helical gear reducer. In the Report 2: Optimal designs for helical gear reducer. In the Report 2: Optimal designs for helical gear reducer. In the Report 2: Optimal designs for helical gear reducer. In the Report 2: Optimal designs for helical gear reducer. In the Report 2: Optimal designs for helical gear reducer. In the Report 2: Optimal designs for helical gear reducer. In the Report 3: Optimal designs for helical gear reducer. In the Report 3: Optimal designs for helical gear reducer. In the Report 3: Optimal designs for helical gear reducer. In the Report 3: Optimal designs for helical gear reducer. In the Report 3: Optimal designs for helical gear reducer. In the Report 3: Optimal designs for h | | | 7th | Nonlinear programming optimizatio | n (1) | and optimization techniques. Explain application examples of nonlinear programming in engineering and unconstrained | | | | Path Nonlinear programming optimization (3) Learn an overview for genetic algorithms and the contents of an optimal solution search program. Take design examples and compare them with other optimization techniques and learn SUMT, linear minimization techniques, and Powell's conjugate direction method. 10th Multi-objective optimization Report 1: Multi-objective optimization of new bus routes (1) Multi-objective optimization of new bus routes (2) Learn about the weighted method for the multi-objective optimization in the exercise. Plan a new bus route to maximize customer satisfaction and profit for the bus operator using multi-objective optimization in the exercise. Plan a new bus route to maximize customer satisfaction and profit for the bus operator using multi-objective optimization using Matlab's Optimization Toolbox. Use the gear design knowledge learned in Engineering Design and Desi | | | 8th | Nonlinear programming optimizatio | n (2) | preprocessing, optimization calculation programs, | | | | 10th Report 1: Multi-objective optimization of new bus routes (1) Nulti-objective optimization of new bus routes (1) Nulti-objective optimization method. Take application examples to learn how to do multi-objective optimization in the exercise. | | | 9th | Nonlinear programming optimizatio | n (3) | Learn an overview for genetic algorithms and the contents of an optimal solution search program. Take design examples and compare them with other optimization techniques. Explain constrained optimization techniques and learn SUMT. linear minimization techniques, and | | | | Ath Quarter | | | 10th | Report 1: Multi-objective optimizati | on of new bus | objective optimization method. Take application examples to learn how to do multi-objective | | | | 12th Report 2: Optimal designs for helical gear reducers (1) Examination Exercise&Report Total | | | 11th | | on of new bus | satisfaction and profit for the bus operator using multi-objective optimization. Multi-objective | | | | reducers (2) Report 2: Optimal designs for helical gear reducers (3) Summary and evaluation Final exam Evaluation Method and Weight (%) Examination Examination Exercise&Report Subtotal Basic Proficiency 30 Sumination Fromote Matlab programming creation (M-files). Study the optimization results, compare them with the computation results done in this course, and recognize the importance of optimal design. Summarize and review the content learned on this course. Final exam Evaluation Method and Weight (%) Examination Exercise&Report Total 100 Basic Proficiency 30 30 60 Specialized Proficiency 10 20 30 | | | 12th | Report 2: Optimal designs for helical reducers (1) | al gear | Engineering Design and Design and Drawing, and create the optimal design for a helical gear | | | | 14th Report 2: Optimal designs for helical gear reducers (3) Study the optimization results, compare them with the computation results done in this course, and recognize the importance of optimal design. 15th Summary and evaluation Summarize and review the content learned on this course. 16th Final exam | | | 13th | Report 2: Optimal designs for helica reducers (2) | al gear | | | | | Evaluation Method and Weight (%) Examination Examination Exercise&Report Subtotal Basic Proficiency 30 Specialized Proficiency 15th Summary and evaluation Examination Exercise&Report Total 100 100 60 30 30 30 30 30 30 30 30 | | | 14th | | al gear | Study the optimization results, compare them with the computation results done in this course, | | | | Evaluation Method and Weight (%) Examination Exercise&Report Total Subtotal 40 60 100 Basic Proficiency 30 30 60 Specialized Proficiency 10 20 30 | | | 15th | Summary and evaluation | | | | | | Examination Exercise&Report Total
Subtotal 40 60 100 Basic Proficiency 30 30 60 Specialized Proficiency 10 20 30 | | | 1 | | | | | | | Subtotal 40 60 100 Basic Proficiency 30 30 60 Specialized Proficiency 10 20 30 | Evaluat | ion Meth | od and ' | Weight (%) | | | | | | Basic Proficiency 30 30 60 Specialized Proficiency 10 20 30 | | | | | · · | ort | | | | Specialized Proficiency 10 20 30 | Cross Area Proficiency 0 10 10 | - | | | | | | | | | | Cross Are | a Proficier | ncy | [0 | 10 | | 10 | | | А | kashi Co | ollege | Year | 2024 | | | Course
Title | Micromachine | |--------------------------------------|---|---|--|---|---|--|--|---| | Course | Informa | tion | 1 | | | | | | | Course Co | | 6038 | | | Course Categor | <i>'</i> | | ed / Elective | | Class Forr | mat | Lecture | cal and Electroni | c System | Credits | | | c Credit: 2 | | Departme | ent | Engineer | | c system | Student Grade | | Adv. 2nd | l | | Term
Textbook | | Second 9 | Semester | | Classes per We | ek | 2 | | | Teaching | | | | | | | | | | Instructor | | · · | UKA Naoki | | | | | | | (2) Under
(3) Can e:
(4) Under | stand the
stand and
xplain mic
stand and | characteris
I can explai
romachines
I can explai | n the principles of
from their struct
n detection princ | ic materials and ca
of typical semicond
cture to the fabrica
iples of sensors an
chniques. (F) and (I | uctor micromach
tion process. (F)
d driving principl | ińing | technique | | | Rubric | | | | | | | | | | | | | Ideal Level | 1.11 | Standard Level | | | Unacceptable Level | | Achievem | ent 1 | | material and calculate the | and the s of anisotropic can accurately physical property stal orientation. | Understand the of anisotropic n calculate the phyalues of crysta | nateria | als and call property | n Do not understand the characteristics of anisotropic materials and cannot calculate the physical property values of crystal orientation. | | Achievem | ent 2 | | of typical sem | plain the principles | Understand an the principles o semiconductor techniques. | f typic | al · | Do not understand and cannot explain the principles of typical semiconductor micromachining techniques. | | Achievem | ent 3 | | | | | | | Cannot explain micromachines detail from their structure to the fabrication process. | | | | | Fully understa
accurately ex
principles of s
principles of a | plain detection
sensors and driving | Understand and can explain detection principles of sensors and driving principles of actuators. | | f sensors | Do not understand and cannot explain detection principles of sensors and driving principles of actuators. | | | | | | y apply sensor and
gn techniques. | | | | Cannot apply sensor and actuator design techniques. | | | | tment Ob | jectives | | | | | | | Outline | g Metho | Microma
sensors,
in a wide
techniqu | actuators, and e
range of fields.
les and microma | electronic circuits u
The first half of th
chine fabrication m | sing semiconduc
is course will exp
ethods. The seco | tor mi
plain ty
ond ha | icromachir
ypical sem
alf will exp | at integrate micro structures,
ning technology. They are applied
integrated micromachining
lain the principles of sensors used
tor design techniques. | | Style | | Classes | will be held in a | lecture-style forma | t and will be taug | ght wi | th handou | its. | | Notice | | guarante
assignm
strength
knowled | eed in classes an
ent reports. It is
of materials, an
ge will be explai | d the standard self
recommended that
d electronic circuits | -study time requ
t students have
s. However, this | iired fo
a basi
course | or pre-stu
c knowled
e is open t | s include the learning time
dy / review, and completing
ge of engineering materials,
to all students as the necessary | | Charact | eristics (| of Class / | Division in L | earning | | | | | | □ Active | Learning | | ☐ Aided by I | СТ | ☐ Applicable to | o Rem | note Class | ☐ Instructor Professionally
Experienced | | Course | Plan | | | | | | | | | | | | Theme | | | Goals | | | | | | 1st | An overview of I | micromachines(1) | | Understand micromachine development historand scaling laws. | | | | | | 2nd | An overview of
Physical propert | micromachines(2)
ies of single-crysta | l silicon (1) 🔠 | Understand the micromachine developr history, scaling laws, crystal structure, manufacturing methods and anisotropic properties of single-crystal silicon. | | laws, crystal structure,
methods and anisotropic | | | | 3rd | Physical propert | ies of single-crysta | l silicon (2) | physic | cal proper | calculation method for the
ties in arbitrary crystal orientation | | 2nd
Semeste | 3rd | 4th | Photolithograph | У | | of single-crystal silicon. Understand the principles of photolithogra | | | | r | Quarter | 5th | Film deposition | (1) | | | | sputter, vapor deposition, and deposition methods. | | | | 6th | Film deposition | (2) | | | rstand the | rmal oxidation and impurity | | | | 7th | Etching | | | Under
etchir | rstand liqu | nid-based isotropic and anisotropic
e-crystal silicon.
i-based dry-etching. | | | | 8th | Micromachine fa | brication technolog | | Under | rstand mic | cromachine fabrication processes uctor micromachining techniques. | | | | 9th | Medium exam | | | | | | | | |--------------------------|--------|-----------|-------------------|---------------|---|--|--|---------|--|--| | | | 10th | Sensor design ted | chnology (1) | | Understand typic principles. | Understand typical micro-sensors and sensing principles. | | | | | | | 11th | Sensor design ted | chnology (2) | | Understand how to design piezoresistive pressure sensors. | | | | | | | 4th | 12th | Sensor design ted | chnology (3) | | Design a piezore | sistive pressure s | sensor. | | | | | Quarte | 13th | Actuator design t | echnology (1) | | Understand typical micro actuators and their driving principles. | | | | | | | | 14th | Actuator design t | echnology (2) | | Understand how to design an electrostatic drive actuator. | | | | | | | | 15th | Final exam | l exam | | | | | | | | | | 16th | | | | | | | | | | Evaluat | ion Me | thod and | Weight (%) | | | | | | | | | | | ttendance | Examination | | | | | Total | | | | Subtotal | 3 | 10 | 70 | 0 | 0 | 0 | 0 | 100 | | | | Basic
Proficienc | | | 0 | 0 | 0 | 0 | 0 | 0 | | | | Specialize
Proficienc | | | 70 | 0 | 0 | 0 | 0 | 100 | | | | Cross Are | | | 0 | 0 | 0 | 0 | 0 | 0 | | |