情報収集・分析、問題発見(PBL教育)
|
|
工学が関わっている数々の事象について、自らの専門知識を駆使して、情報を収集することができる。 |
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
3
|
0
|
0
|
0
|
3
|
0
|
0
|
2
|
1
|
3
|
0
|
2
|
0
|
0
|
集められた情報をもとに、状況を適確に分析することができる。 |
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
3
|
0
|
0
|
0
|
3
|
0
|
0
|
2
|
1
|
3
|
0
|
1
|
0
|
0
|
与えられた目標を達成するための解決方法を考えることができる。 |
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
2
|
0
|
0
|
0
|
3
|
0
|
0
|
2
|
1
|
3
|
0
|
3
|
0
|
0
|
状況分析の結果、問題(課題)を明確化することができる。 |
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
2
|
0
|
0
|
0
|
3
|
0
|
0
|
3
|
1
|
3
|
0
|
0
|
0
|
0
|
課題解決へのアプローチ(PBL教育)
|
|
各種の発想法や計画立案手法を用いると、課題解決の際、効率的、合理的にプロジェクトを進めることができることを知っている。 |
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
3
|
0
|
2
|
0
|
0
|
0
|
0
|
各種の発想法、計画立案手法を用い、より効率的、合理的にプロジェクトを進めることができる。 |
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
3
|
0
|
2
|
0
|
0
|
0
|
0
|
企業活動理解(共同教育)
|
|
クライアント(企業及び社会)の要求に適合するシステムやプロセスを開発することができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
企画立案から実行するまでのプロセスを持続可能性の実現性を配慮して実行することができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
品質、コスト、効率、スピード、納期などに対する視点を持つことができる。 |
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
学習と企業活動の関連(共同教育)
|
|
高専で学んだ専門分野・一般科目の知識・教養が、企業及び社会でどのように活用されているかを理解し、技術・応用サービスの実施ができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
地域や企業の現実の問題を踏まえ、その課題を明確化し、解決することができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
問題解決のために、最適なチームワーク力、リーダーシップ力、マネジメント力などを身に付けることができる。 |
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
キャリアデザイン(共同教育)
|
|
技術者として、幅広い人間性と問題解決力、社会貢献などの必要性を理解できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
技術者として、生きる喜びや誇りを実感し、知恵や感性、チャレンジ精神などを駆使して実践創造的な活動を楽しむことを理解できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
技術者として、社会に対して有益な価値を提供するために存在し、社会の期待に十分応えられてこそ、存在の価値のあることを理解できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
企業人としても成長していく自分を意識し、継続的な自己研さんや学習が必要であることを理解できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
数と式の計算(数学)
|
|
整式の加減乗除の計算や、式の展開ができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
因数定理等を利用して、4次までの簡単な整式の因数分解ができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
分数式の加減乗除の計算ができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
実数・絶対値の意味を理解し、絶対値の簡単な計算ができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
平方根の基本的な計算ができる(分母の有理化も含む)。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
複素数の相等を理解し、その加減乗除の計算ができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
方程式 不等式(数学)
|
|
1元連立1次不等式を解くことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
基本的な2次不等式を解くことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
解の公式等を利用して、2次方程式を解くことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
因数定理等を利用して、基本的な高次方程式を解くことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
簡単な連立方程式を解くことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
無理方程式・分数方程式を解くことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
1次不等式や2次不等式を解くことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
恒等式と方程式の違いを区別できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
関数とグラフ(数学)
|
|
無理関数の性質を理解し、グラフをかくことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
関数のグラフと座標軸との共有点を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
2次関数の性質を理解し、グラフをかくことができ、最大値・最小値を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
分数関数や無理関数の性質を理解し、グラフをかくことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
簡単な場合について、関数の逆関数を求め、そのグラフをかくことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
指数関数 対数関数(数学)
|
|
累乗根の意味を理解し、指数法則を拡張し、計算に利用することができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
指数関数の性質を理解し、グラフをかくことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
指数関数を含む簡単な方程式を解くことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
対数の意味を理解し、対数を利用した計算ができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
対数関数の性質を理解し、グラフをかくことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
対数関数を含む簡単な方程式を解くことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
三角関数(数学)
|
|
三角比を理解し、三角関数表を用いて三角比を求めることができる。一般角の三角関数の値を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
角を弧度法で表現することができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
三角関数の性質を理解し、グラフをかくことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
加法定理および加法定理から導出される公式等を使うことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
三角関数を含む簡単な方程式を解くことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
4
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
図形と式(数学)
|
|
通る点や傾きから直線の方程式を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
2点間の距離を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
内分点の座標を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
2つの直線の平行・垂直条件を利用して、直線の方程式を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
簡単な場合について、円の方程式を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
場合の数(数学)
|
|
積の法則と和の法則を利用して、簡単な事象の場合の数を数えることができる。 |
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
簡単な場合について、順列と組合せの計算ができる。 |
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
数列(数学)
|
|
等差数列・等比数列の一般項やその和を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
総和記号を用いた簡単な数列の和を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
不定形を含むいろいろな数列の極限を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
無限等比級数等の簡単な級数の収束・発散を調べ、その和を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
ベクトル(数学)
|
|
ベクトルの定義を理解し、ベクトルの基本的な計算(和・差・定数倍)ができ、大きさを求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
平面および空間ベクトルの成分表示ができ、成分表示を利用して簡単な計算ができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
平面および空間ベクトルの内積を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
問題を解くために、ベクトルの平行・垂直条件を利用することができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
空間内の直線・平面・球の方程式を求めることができる(必要に応じてベクトル方程式も扱う)。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
行列(数学)
|
|
行列の和・差・数との積の計算ができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
行列の積の計算ができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
行列の定義を理解し、行列の和・差・スカラーとの積、行列の積を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
逆行列の定義を理解し、2次の正方行列の逆行列を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
行列式の定義および性質を理解し、基本的な行列式の値を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
行列の応用(数学)
|
|
線形変換の定義を理解し、線形変換を表す行列を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
合成変換や逆変換を表す行列を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
平面内の回転に対応する線形変換を表す行列を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
微分法(数学)
|
|
導関数の定義を理解している。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
簡単な場合について、関数の極限を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
微分係数の意味や、導関数の定義を理解し、導関数を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
積・商の導関数の公式を用いて、導関数を求めることがができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
合成関数の導関数を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
三角関数・指数関数・対数関数の導関数を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
逆三角関数を理解し、逆三角関数の導関数を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
4
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
微分法の応用(数学)
|
|
関数の増減表を書いて、極値を求め、グラフの概形をかくことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
極値を利用して、関数の最大値・最小値を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
簡単な場合について、関数の接線の方程式を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
2次の導関数を利用して、グラフの凹凸を調べることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
4
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
関数の媒介変数表示を理解し、媒介変数を利用して、その導関数を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
4
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
積分法(数学)
|
|
微積分の基本定理を理解している。 |
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
定積分の基本的な計算ができる。 |
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
置換積分および部分積分を用いて、定積分を求めることができる。 |
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
不定積分の定義を理解し、簡単な不定積分を求めることができる。 |
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
置換積分および部分積分を用いて、不定積分や定積分を求めることができる。 |
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
定積分の定義と微積分の基本定理を理解し、簡単な定積分を求めることができる。 |
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
分数関数・無理関数・三角関数・指数関数・対数関数の不定積分・定積分を求めることができる。 |
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
4
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
積分法の応用(数学)
|
|
簡単な場合について、曲線で囲まれた図形の面積を定積分で求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
簡単な場合について、曲線の長さを定積分で求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
簡単な場合について、立体の体積を定積分で求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
偏微分(数学)
|
|
いろいろな関数の偏導関数を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
2変数関数の定義域を理解し、不等式やグラフで表すことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
合成関数の偏微分法を利用して、偏導関数を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
簡単な関数について、2次までの偏導関数を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
偏導関数を用いて、基本的な2変数関数の極値を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
重積分(数学)
|
|
2重積分を累次積分になおして計算することができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
2重積分の定義を理解し、簡単な2重積分を累次積分に直して求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
極座標に変換することによって2重積分を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
2重積分を用いて、簡単な立体の体積を求めることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
微分方程式(数学)
|
|
基本的な変数分離形の微分方程式を解くことができる。 |
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
微分方程式の意味を理解し、簡単な変数分離形の微分方程式を解くことができる。 |
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
簡単な1階線形微分方程式を解くことができる。 |
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
定数係数2階斉次線形微分方程式を解くことができる。 |
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
確率・統計(数学)
|
|
独立試行の確率、余事象の確率、確率の加法定理、排反事象の確率を理解し、簡単な場合について、確率を求めることができる。 |
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
条件付き確率、確率の乗法定理、独立事象の確率を理解し、簡単な場合について確率を求めることができる。 |
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
1次元のデータを整理して、平均・分散・標準偏差を求めることができる。 |
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
技術史の基本と実践(技術史)
|
|
歴史の大きな流れの中で、科学技術が社会に与えた影響を理解し、自らの果たしていく役割や責任を理解できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
基礎的原理・現象(工学実験技術(各種測定方法、データ処理、考察方法))
|
|
物理、化学、情報、工学についての基礎的原理や現象を、実験を通じて理解できる。 |
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
実験・計測・分析方法(工学実験技術(各種測定方法、データ処理、考察方法))
|
|
物理、化学、情報、工学における基礎的な原理や現象を明らかにするための実験手法、実験手順について説明できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
実験装置や測定器の操作、及び実験器具・試薬・材料の正しい取扱を身に付け、安全に実験できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
実験データの分析、誤差解析、有効桁数の評価、整理の仕方、考察の論理性に配慮して実践できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
考察・レポート作成(工学実験技術(各種測定方法、データ処理、考察方法))
|
|
実験テーマの目的に沿って実験・測定結果の妥当性など実験データについて論理的な考察ができる。 |
2
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
実験ノートや実験レポートの記載方法に沿ってレポート作成を実践できる。 |
2
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
技術者倫理の基本と実践(技術者倫理(知的財産、法令順守、持続可能性を含む)および技術史)
|
|
技術者倫理が必要とされる社会的背景や重要性を理解し、社会における技術者の役割と責任を説明できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
技術者を目指す者として、社会での行動規範としての技術者倫理を理解し、問題への適切な対応力(どうのように問題を捉え、考え、行動するか)を身に付けて、課題解決のプロセスを実践できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
説明責任、製造物責任、リスクマネジメントなど、技術者の行動に関する基本的な責任事項を説明できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
情報倫理(技術者倫理(知的財産、法令順守、持続可能性を含む)および技術史)
|
|
情報技術の進展が社会に及ぼす影響、個人情報保護法、著作権などの法律について説明できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
高度情報通信ネットワーク社会の中核にある情報通信技術と倫理との関わりを説明できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
環境倫理(技術者倫理(知的財産、法令順守、持続可能性を含む)および技術史)
|
|
環境問題の現状についての基本的な事項について把握し、科学技術が地球環境や社会に及ぼす影響を説明できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
国際貢献・地域貢献(技術者倫理(知的財産、法令順守、持続可能性を含む)および技術史)
|
|
国際社会における技術者としてふさわしい行動とは何かを説明できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
知的財産(技術者倫理(知的財産、法令順守、持続可能性を含む)および技術史)
|
|
知的財産の社会的意義や重要性の観点から、知的財産に関する基本的な事項を説明できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
知的財産の獲得などで必要な新規アイデアを生み出す技法などについて説明できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
法令順守(技術者倫理(知的財産、法令順守、持続可能性を含む)および技術史)
|
|
技術者の社会的責任、社会規範や法令を守ること、企業内の法令順守(コンプライアンス)の重要性について説明できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
技術者を目指す者として、諸外国の文化・慣習などを尊重し、それぞれの国や地域に適用される関係法令を守ることの重要性を把握している。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
持続可能性(技術者倫理(知的財産、法令順守、持続可能性を含む)および技術史)
|
|
社会性、社会的責任、コンプライアンスが強く求められている時代の変化の中で、技術者として信用失墜の禁止と公益の確保が考慮することができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
全ての人々が将来にわたって安心して暮らせる持続可能な開発を実現するために、自らの専門分野から配慮すべきことが何かを説明できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
技術者を目指す者として、平和の構築、異文化理解の推進、自然資源の維持、災害の防止などの課題に力を合わせて取り組んでいくことの重要性を認識している。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
情報の基礎(情報リテラシー)
|
|
情報を適切に収集・処理・発信するための基礎的な知識を活用できる。 |
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
論理演算と進数変換の仕組みを用いて基本的な演算ができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
コンピュータのハードウェアに関する基礎的な知識を活用できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
2
|
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
情報ネットワーク(情報リテラシー)
|
|
インターネットの仕組みを理解し、実践的に使用できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
情報セキュリティの必要性、様々な脅威の実態とその対策について理解できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
個人情報とプライバシー保護の考え方について理解し、正しく実践できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
インターネットを用いた犯罪例などを知り、それに対する正しい対処法を実践できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
情報伝達システムやインターネットの基本的な仕組みを把握している。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
アルゴリズム(情報リテラシー)
|
|
数値計算の基礎が理解できる |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
コンピュータにおける初歩的な演算の仕組みを理解できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
2
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
データの型とデータ構造が理解できる |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
3
|
2
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
グローバリゼーション・異文化多文化理解(グローバリゼーション・異文化多文化理解)
|
|
世界の歴史、交通・通信の発達から生じる地域間の経済、文化、政治、社会問題を理解し、技術者として、それぞれの国や地域の持続的発展を視野においた、経済的、社会的、環境的な進歩に貢献する資質を持ち、将来技術者の役割、責任と行動について考えることができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
リテラシー(その他の学習内容)
|
|
少なくとも一つの具体的なコンピュータシステムについて、起動・終了やファイル操作など、基本的操作が行える。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
4
|
少なくとも一つの具体的なオフィススイート等を使って、文書作成や図表作成ができ、報告書やプレゼンテーション資料を作成できる。 |
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
4
|
少なくとも一つのメールツールとWebブラウザを使って、メールの送受信とWebブラウジングを行うことができる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
3
|
0
|
0
|
4
|
セキュリティ(その他の学習内容)
|
|
コンピュータウィルスやフィッシングなど、コンピュータを扱っている際に遭遇しうる代表的な脅威について説明できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
3
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
3
|
3
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
コンピュータを扱っている際に遭遇しうる脅威に対する対策例について説明できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
0
|
0
|
0
|
2
|
3
|
0
|
0
|
0
|
0
|
0
|
3
|
0
|
0
|
3
|
3
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
データベース(その他の学習内容)
|
|
データモデル、データベース設計法に関する基本的な概念を説明できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
2
|
0
|
0
|
0
|
0
|
3
|
3
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
データベース言語を用いて基本的なデータ問合わせを記述できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
0
|
0
|
3
|
3
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
メディア情報処理(その他の学習内容)
|
|
メディア情報の主要な表現形式や処理技法について説明できる。 |
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|