到達目標
・微分方程式の意味(解)を理解する。
・変数分離形、1階線形微分方程式を解くことができる。
ルーブリック
| 理想的な到達レベルの目安 | 標準的な到達レベルの目安 | 未到達レベルの目安 |
微分方程式の意味 | 微分方程式の意味(解)を確実に理解する。 | 微分方程式の意味(解)を理解する。 | 微分方程式の意味(解)をヒントを与えられて理解する。 |
1階線形微分方程式 | 変数分離形、1階線形微分方程式を確実に解くことができる。 | 変数分離形、1階線形微分方程式を解くことができる。 | 変数分離形、1階線形微分方程式をヒントを与えられて解くことができる。 |
| | | |
学科の到達目標項目との関係
Diploma Policy DP2
説明
閉じる
教育方法等
概要:
【開講学期】春学期週2時間
数学の分野の中で現実の諸問題と関連の深いものの一つである微分方程式について、1階のものを学ぶ。線形微分方程式を中心に、解の構造を理解し、基本的な微分方程式が解けるようになることを目標とする。
授業の進め方・方法:
各回のテーマについて講義形式で説明をする。例題等で各々の方程式の解き方を紹介するとともに時間の許す限り問題を実際に解いて計算応用能力を養うことに重点を置く。教科書等に問の問題は各自復習を兼ねて学習する必要がある。なお、授業内容の確認のための小テストの実施や課題の提出を求める。
注意点:
微分積分学の基本事項を理解していることを前提とする。微分積分の理解が足りない学生は、しっかりと復習しなければならない。問題集の問題にも挑戦し、自力で解けるようになるまで学習すること。また、本科目は学修単位であるので授業1時間に対して2時間の自学自習が求められる。自学自習の成果は提出物、授業中の課題、および小テスト、到達度試験にて評価する。
授業計画
|
|
週 |
授業内容 |
週ごとの到達目標 |
前期 |
1stQ |
1週 |
微分方程式とその解 |
基本事項を理解して、問題を解くことができる。
|
2週 |
1階微分方程式―変数分離形 |
基本事項を理解して、問題を解くことができる。
|
3週 |
1階線形微分方程式(1) |
基本事項を理解して、問題を解くことができる。
|
4週 |
1階線形微分方程式(2) |
基本事項を理解して、問題を解くことができる。
|
5週 |
1階線形微分方程式(3) |
基本事項を理解して、問題を解くことができる。
|
6週 |
1階線形微分方程式(4) |
基本事項を理解して、問題を解くことができる。
|
7週 |
練習問題 |
基本事項を理解して、問題を解くことができる。
|
8週 |
到達度試験 (答案返却とまとめ) |
基本事項を理解して、問題を解くことができる。
|
2ndQ |
9週 |
|
|
10週 |
|
|
11週 |
|
|
12週 |
|
|
13週 |
|
|
14週 |
|
|
15週 |
|
|
16週 |
|
|
モデルコアカリキュラムの学習内容と到達目標
分類 | 分野 | 学習内容 | 学習内容の到達目標 | 到達レベル | 授業週 |
基礎的能力 | 数学 | 数学 | 数学 | 微分方程式の意味を理解し、簡単な変数分離形の微分方程式を解くことができる。 | 3 | |
簡単な1階線形微分方程式を解くことができる。 | 3 | |
定数係数2階斉次線形微分方程式を解くことができる。 | 3 | |
評価割合
| 到達度試験 | 課題・小テスト | 合計 |
総合評価割合 | 80 | 20 | 100 |
基礎的能力 | 0 | 0 | 0 |
専門的能力 | 80 | 20 | 100 |
分野横断的能力 | 0 | 0 | 0 |