応用数学B(5912)

科目基礎情報

学校 八戸工業高等専門学校 開講年度 令和06年度 (2024年度)
授業科目 応用数学B(5912)
科目番号 0032 科目区分 専門 / 選択
授業形態 講義 単位の種別と単位数 学修単位: 2
開設学科 産業システム工学専攻電気情報システム工学コース 対象学年 専2
開設期 前期 週時間数 2
教科書/教材 Key Point & Seminar 工学基礎 複素関数論 矢嶋徹・及川正行 共著 サイエンス社
担当教員 若狭 尊裕

到達目標

複素平面、正則関数、コーシー・リーマンの関係式、複素積分、コーシーの積分定理、ローラン展開、留数 等を理解する。
具体的には、教科書の問題と同レベルのものが解けるようになることである。

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
評価項目1複素平面、正則関数、コーシー・リーマンの関係式を理解し、使いこなすことができる。 具体的には、教科書の問題と同レベルのものが解ける。 複素平面、正則関数、コーシー・リーマンの関係式を理解する。 具体的には、教科書の基本的な問題が解ける。 複素平面、正則関数、コーシー・リーマンの関係式を理解していない。 教科書の基本的な問題が解けない。
評価項目2複素積分、コーシーの積分定理、ローラン展開、留数 等を理解し、使いこなすことができる。 教科書の応用的な問題が解ける。 複素積分、コーシーの積分定理、ローラン展開、留数 等を理解する。 教科書の基本的な問題が解ける。 複素積分、コーシーの積分定理、ローラン展開、留数 等を理解できない。 教科書の基本的な問題が解けない。

学科の到達目標項目との関係

ディプロマポリシー DP2 ◎ 説明 閉じる

教育方法等

概要:
【 授業の目標 】
 本科で学んできた基礎数学、微分積分学等の知識をもとに、複素数関数の正則性、積分の性質を中心に学ぶ。実数関数の微分と複素関数の微分の違いを理解し、複素積分の性質を習得できることを目標とする。
授業の進め方・方法:
授業は2時間連続で週1回行われる。講義の進め方は教員が基本事項の説明を行い、随時、教科書や問題集の問題を解いていく。教員の説明に集中し、黒板に板書されたものをノートにまとめてほしい。時間の許す限り実際に問題を解いて運用能力を養うことに重点を置く。
注意点:
微分積分学の基本は理解していることを前提に授業を進める。教科書に沿って進めるので予習を行うこと。授業中にも演習の時間をとるが、それ以外にも自ら色々な問題を解くことが必要である。疑問点はすぐに質問またはオフィスアワーを活用してほしい。

授業の属性・履修上の区分

アクティブラーニング
ICT 利用
遠隔授業対応
実務経験のある教員による授業

授業計画

授業内容 週ごとの到達目標
前期
1stQ
1週 複素数、複素平面、極形式、ド・モアブルの定理、n乗根 基本事項を理解する
2週 複素数列と極限値、点集合、連続曲線、立体射影と無限遠点 基本事項を理解する
3週 指数関数、対数関数、べき関数 基本事項を理解する
4週 三角関数、双曲線関数 基本事項を理解する
5週 複素関数の微分 基本事項を理解する
6週 コーシー・リーマンの関係式 基本事項を理解する
7週 中間試験
8週 複素積分 基本事項を理解する
2ndQ
9週 積分路、コーシーの積分定理 基本事項を理解する
10週 コーシーの積分公式 基本事項を理解する
11週 複素級数の絶対収束と条件収束 基本事項を理解する
12週 テイラー展開、ローラン展開 基本事項を理解する
13週 解析接続、特異点、留数定理 基本事項を理解する
14週 留数定理の応用
基本事項を理解する
15週 期末試験
16週 期末試験の答案返却とまとめ

モデルコアカリキュラムの学習内容と到達目標

分類分野学習内容学習内容の到達目標到達レベル授業週
基礎的能力数学数学数学実数・絶対値の意味を理解し、絶対値の簡単な計算ができる。4
複素数の相等を理解し、その加減乗除の計算ができる。4
累乗根の意味を理解し、指数法則を拡張し、計算に利用することができる。4
指数関数の性質を理解し、グラフをかくことができる。4
指数関数を含む簡単な方程式を解くことができる。4
対数の意味を理解し、対数を利用した計算ができる。4
対数関数の性質を理解し、グラフをかくことができる。4
対数関数を含む簡単な方程式を解くことができる。4
簡単な1変数関数の局所的な1次近似式を求めることができる。4
1変数関数のテイラー展開を理解し、基本的な関数のマクローリン展開を求めることができる。4
オイラーの公式を用いて、複素数変数の指数関数の簡単な計算ができる。4

評価割合

試験課題相互評価態度ポートフォリオその他合計
総合評価割合90100000100
基礎的能力0000000
専門的能力90100000100
分野横断的能力0000000