応用数学B(5912)

科目基礎情報

学校 八戸工業高等専門学校 開講年度 平成30年度 (2018年度)
授業科目 応用数学B(5912)
科目番号 0094 科目区分 専門 / 選択
授業形態 講義 単位の種別と単位数 学修単位: 2
開設学科 産業システム工学専攻環境都市・建築デザインコース 対象学年 専2
開設期 前期 週時間数 2
教科書/教材 複素解析へのアプローチ、山本 稔、坂田 定久 共著、裳華房
担当教員 鳴海 哲雄

目的・到達目標

複素平面、正則関数、コーシー・リーマンの関係式、複素積分、コーシーの積分定理、ローラン展開、留数 等を理解する。
具体的には、教科書の問題と同レベルのものが解けるようになることである。

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
評価項目1複素平面、正則関数、コーシー・リーマンの関係式を理解する。 具体的には、教科書の問題と同レベルのものが解ける。 複素平面、正則関数、コーシー・リーマンの関係式を理解する。 具体的には、教科書の基本的な問題が解ける。 複素平面、正則関数、コーシー・リーマンの関係式を理解でない。 教科書の基本的な問題が解けない。
評価項目2複素積分、コーシーの積分定理、ローラン展開、留数 等を理解する。 教科書の応用的な問題が解ける。 複素積分、コーシーの積分定理、ローラン展開、留数 等を理解する。 教科書の基本的な問題が解ける。 複素積分、コーシーの積分定理、ローラン展開、留数 等を理解できない。 教科書の基本的な問題が解けない。

学科の到達目標項目との関係

学習・教育到達度目標 DP2 説明 閉じる

教育方法等

概要:
【 授業の目標 】
 本科で学んできた基礎数学、微分積分学等の知識をもとに、複素数関数の正則性、積分の性質を中心に学ぶ。実数関数の微分と複素関数の微分の違いを理解し、複素積分の性質を習得できることを目標とする。
授業の進め方と授業内容・方法:
授業は2時間連続で週1回行われる。講義の進め方は教員が基本事項の説明を行い、随時、教科書や問題集の問題を解いていく。教員の説明に集中し、黒板に板書されたものをノートにまとめてほしい。時間の許す限り実際に問題を解いて運用能力を養うことに重点を置く。
注意点:
微分積分学の基本は理解していることを前提に授業を進める。教科書に沿って進めるので予習を行うこと。授業中にも演習の時間をとるが、それ以外にも自ら色々な問題を解くことが必要である。疑問点はすぐに質問またはオフィスアワーを活用してほしい。

授業計画

授業内容・方法 週ごとの到達目標
前期
1stQ
1週 複素数と複素平面、ド・モアブルの定理 基本事項を理解する
2週 複素平面上の点集合、複素平面と無限遠点 基本事項を理解する
3週 一次関数、連続関数、正則関数 基本事項を理解する
4週 正則関数 基本事項を理解する
5週 初等関数(1) 基本事項を理解する
6週 初等関数(2) 基本事項を理解する
7週 まとめと演習 基本問題が解ける
8週 中間試験
2ndQ
9週 複素積分 基本事項を理解する
10週 コーシーの積分定理、コーシーの積分表示 基本事項を理解する
11週 関数項級数と一様収束、ベキ級数 基本事項を理解する
12週  テイラー展開、零点、一致の定理 基本事項を理解する
13週 ローラン展開 基本事項を理解する
14週 留数、実定積分の計算  基本事項を理解する
15週 期末試験
16週 期末試験の答案返却とまとめ

評価割合

試験課題相互評価態度ポートフォリオその他合計
総合評価割合90100000100
基礎的能力0000000
専門的能力90100000100
分野横断的能力0000000