固体物性工学

科目基礎情報

学校 仙台高等専門学校 開講年度 平成28年度 (2016年度)
授業科目 固体物性工学
科目番号 0120 科目区分 専門 / 選択
授業形態 授業 単位の種別と単位数 学修単位: 2
開設学科 生産システムデザイン工学専攻 対象学年 専1
開設期 前期 週時間数 2
教科書/教材 量子物理学入門-物質工学を学ぶ人のために- 青野朋義 他2名 共著
担当教員 鈴木 勝彦

到達目標

・ハイゼンベルグの不確定性原理が理解できる。
・井戸型ポテンシャルに閉じ込められた電子の波動関数、エネルギー準位が計算できる。
・1次元調和振動子の波動関数、エネルギー準位が計算できる。
・量子統計が理解できる。・比熱、分子の吸収波長の計算が理解できる。・量子統計を導きせる。
・SPMの原理、測定方法が理解できる。・SQUIDの原理が理解できる。

ルーブリック

理想的な到達レベルの目安標準的な到達レベルの目安未到達レベルの目安
シュレディンガー方程式と不確定性原理シュレディンガー方程式を導き出すことができ、不確定性原理を箱型ポテンシャルの例で計算できる。シュレディンガー方程式と不確定性原理の物理的意味が理解できる。ボルン近似について理解していない。
量子統計F-D統計、B-E統計、M-B統計を導きだすことができ、Anyonについて理解できる。F-D統計、B-E統計、M-B統計の違いが理解できる。M-B統計しか理解していない。
量子力学と量子統計に関する計算比熱のデータからフェルミ近傍の状態密度が計算できる。吸収波長が計算できる。比熱の計算方法、吸収波長の計算方法が理解できる。Einsteinの比熱が理解できない。

学科の到達目標項目との関係

教育方法等

概要:
マイクロテクノロジー、ナノテクノロジー、両テクノロジーの融合技術は次世代の技術の発展を支える重要な技術と考えられ、日々発展を遂げている。固体物性工学はそれを支える重要な学問の一つである。固体物性工学は量子力学と統計力学を基本としている。それを基本としてアインシュタインの挑戦した物体の比熱の計算、分子の吸収波長の計算や応用例(走査プローブ顕微鏡(SPM)、超伝導量子干渉磁束計(SQUID)など)を学び、先端科学技術を駆使したものづくりに役立てられるよう心がけて講義する。
授業の進め方・方法:
なるべく平易に理解しやすい説明し、微積分を使い不確定性原理の式を導きだしたり、実験データから状態密度を計算したり、吸収波長を計算したりして、理解して使える講義を心がける。
注意点:
前期量子論、熱力学の初歩、微分方程式の解法の知識があれば内容の深いところまでの理解につながる。

授業計画

授業内容 週ごとの到達目標
前期
1stQ
1週 先端技術と物理学 先端と物理学の相互依存が理解できる。
2週 【量子力学】
量子力学の考え方Ⅰ
古典力学との違いが理解できる。
3週 量子力学の考え方Ⅱ Schrödinger方程式とHeisenbergの不確定性原理が理解でき、計算でも導き出せる。小澤の不等式も理解できる。
4週 固有関数とエネルギー固有値Ⅰ 井戸型ポテンシャルに閉じ込められた電子の波動関数、エネルギー準位が計算できる。
5週 トンネル効果 トンネル効果が説明でき、トンネル磁気抵抗素子や走査型プローブ顕微鏡の原理が理解できる。
6週 1次元調和振動子 1次元調和振動子が理解できる。
7週 水素原子の解法Ⅰ 水素原子の電子の波動関数の求め方が理解できる。
8週 水素原子の解法Ⅱ 水素原子の電子のエネルギー準位の計算方法が理解できる。
2ndQ
9週 スピンとパウリの排他律 スピン演算子、ゼーマン効果、パウリの排他律が理解できる。
10週 【統計力学】
統計力学の考え方
統計集団、統計力学の基本定理が理解できる。
11週 量子統計
Fermi-Dirac統計、Bose-Einstein統計、Maxwell-Boltzmann統計、Fermion、Boson、Anyonが理解できる。
12週 固体の比熱(格子比熱) 比熱に関するEinsteinの理論、デバイの理論が理解できる。
13週 固体の比熱(電子比熱) 電子比熱を用いてフェルミ準位近傍の状態密度の計算方法が理解できる。
14週 超伝導 マイスナー効果、ジョセフソン効果、超伝導量子干渉計が理解できる。
15週 分子の吸収波長の計算 自由電子模型よる分子の吸収波長の計算方法が理解できる。
16週 理解度確認テスト 分子の吸収波長の計算や比熱のデ実験結果からフェルミ準位近傍の状態密度の計算ができる。

モデルコアカリキュラムの学習内容と到達目標

分類分野学習内容学習内容の到達目標到達レベル授業週
専門的能力分野別の専門工学材料系分野材料物性陽子・中性子・電子からなる原子の構造について説明できる。4前1
ボーアの水素原子模型を用いて、エネルギー準位を説明できる。4前1
水素原子中の電子のエネルギー状態が離散的な値を取ることを説明できる。4前1
量子条件から電子のエネルギー状態および軌道半径を導出し、説明できる。4前1
4つの量子数を用いて量子状態を記述して、電子殻や占有する電子数などを説明できる。4前1
周期表の元素配列に対して、電子配置や各族および周期毎の物性の特徴を関連付けられる。4前1
電子が持つ粒子性と波動性について、現象を例に挙げ、式を用いて説明できる。4前1,前2
量子力学的観点から電気伝導などの現象を説明できる。4前2,前6,前7,前8,前9,前10
半導体の種類について説明できる。3前11
不純物半導体の特徴を真性半導体と区別して説明できる。3前12
不純物半導体のエネルギーバンドと不純物準位を描き、伝導機構について説明できる。3前13

評価割合

試験発表相互評価態度ポートフォリオその他合計
総合評価割合80000020100
基礎的能力0000000
専門的能力80000020100
分野横断的能力0000000